
DOCUMENT RESUME

ED 093 703 SE 018 077

AUTHOR Smith, Nancy Woodland
TITLE A Question-Answering System for Elementary

Mathematics.
INSTITUTION Stanford Univ., Calif. Inst. for Mathematical Studies

in Social Science.
SPONS AGENCY National Science Foundation, Washington, D.C.
REPORT NO NSF-EC-443X4
PUB DATE 19 Apr 74
NOTE 161p.; Psychology and Education Series, Technical

Report No. 227

EDRS PRICE
DESCRIPTORS

Mr-$0.75 HC -$7.80 PLUS POSTAGE
Computer Assisted Instruction; *Computers; Computer
Science; Cybernetics; *Educational Technology;
Elementary School Mathematics; *Language Research;
*Linguistic Theory; Mathematical Linguistics;
*Mathematics Education

ABSTRACT
This paper describes a project concerned with the

understanding of natural language by computers. The project involves
the development of both a theoretical model of natural language
processing by computer and an actual implementation of the theory.
The specific implementation chosen is a question-answering system for
elementary mathematics which uses unrestricted natural language
input. Details of the question-answering system are given and basic
features in the perspective of the theoretical model are discussed.
(JP)

BEST COPY AVA/OBli.

A QUESTION-ANSWERING SYSTEM FOR ELEMENTARY MATHEMATICS

by

Nancy Woodland Smith

U S DEPARTMENT OF HEALTH.
EDUCATION & WELFARE
NATIONAL INSTITUTE OF

EDUCATION
THIS DOCUMENT HAS BEEN REPRO
OLKED ExACTLy AS RECEIVED FROM
THE PERSON OR ORGA.NiZATtON ORIGIN
%TING , C POINTS OF vIEw OR OPINIONS

FENTTED DO NOT NECESSARILY REPRS
OFFICIAL NAT IONAL INSTITUTE OF

A

EDUCATION POSITION OR POLICY

TECHNICAL REPORT NO. 227

April 19, 1974

PSYCHOLOGY AND EDUCATION SERIES

Reproduction in Whole or in Part Is Permitted for

Any Purpose of the United States Government

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES

STANFORD UNIVERSITY

STANFORD, CALIFORNIA

Table of Contents

Chapter

Section

Acknowledgments 00

Page

V

I. Introduction 1

I.1 General Introduction . 0 1

1.2 Basic Components of the System 0 . 2

1.3 Choice of Subject Matter 0 0 . 2

Ti. The Theoretical Model 10

II.1 Comparison with Other Systems . . . 0 10

11.2 Transformations 38

11.3 Restructuring . . 44

III. CONSTRUCT and the Grammar , . , . .

III.1 CONSTRUCT . . , 0 , . .

. 51

. 51

111.2 The Scanner and the Dictionary.. 0 . . , 53

111.3 The TRANSL File . . 0 0 000 57

111.4 The Grammar . 59

IV, The Rules of the Grammar and their Semantic Functions . 70

IV,1 Introduction . 0000 0 . 70

IV.2 S-Rules , 76

1V,3 F- -Rules . , > . . 0 , 77

1

IV.4

IV.5

IV.6

IV.7

Top-Level EXP-Rules .

Types of EXP's .

EXPl-Rules . .

Set-Expressions and Ntuples

.

.

,

.

.

.

.

. .

.

.

.

.

78

80

81

83

IV,8 DATEXP and TIMEXP-Rules , 85

IV.9 ARITHEXP-Rules 6 0 8 8 0 0 . 85

IV.10 UNIT and NUNIT-Rules . . . 86

IV.11 Geometric Measurements a . 88

IV.12 Relative Clauses . . . 89

IV.13 Prepositions 91

IV,14 SUBST-Rules . . , 97

IV,15 Arithmetic Relations 0 0 8 0 100

IV,16

rv.17

Adjective Rules . ,

CONVUNITS-Rules

. . .

.

.

.

101

101

IV.18 CONVPREP-Rules . . . 102

IV,19 SPEOPPEPHRASE-Rules . . . 103

IV.20 SPECPREP1-Rules 103

IV.21 ORDERING-Rules , . , . . . 105

IV,22 Commands Using Special Verbs . . . 105.

IV.23 Arithmetc Commands 106

IV,24 3asic Command Rule , . . . , , , 107

IV,25 Special Conversion Commands 107

IV.26 Combinations of Commands , . . 108

IV.27 Declaratives , . . , 109

IV,28 NP-Rules 110

ii

IV.29 NP1-Rules 112

IV.30 NP2-Rules 114

IV.31 NP3-Rules . . . 116

IV,32 NP4-Rules for Set Nouns 117

IV.33 NP4-Rules for Function Nouns . . . 118

IV.34 2FCN-Rules 121

IV.35 Existence Questions 122

IV.36 If Questions . . . 122

IV.37 Idiomatic Question Formats 123

IV.38 Questions With Introductory Clauses . . . 123

IV.39 Questions Beginning with a Linking Verb 124

IV.40 Questions Beginning with an Auxiliary Verb . . . 125

IV.41 CHOICELIST Questions 127

IV.42 Q1-Rules 129

IV.43 HOWMANY Questions Involving UNITS and NUNITs . . 129

IV.44 Other HOWMANY Questions 131

IV.45 Interrogative Questions 132

IV.46 FCNHNP-Rules 133

IV.47 HNPAS-Rules 133

IV.48 COMP1HNP and COMP2HNP-Rules . . . 134

IV.49 HAVENPF-Rules 135

IV.50 HAVENP-Rules 136

Appendix I

Examples of Questions and their Answers . . 138

iii

Index . 147

References . 149

117

Acknowledgments

I wish to express my deep gratitude to my husband, Dr. Robert

L. Smith, Jr. for all his help with the project. He also deserves

very special thanks for the typing of this dissertation, the many hours

of babysitting with our daughter, and the large amount of advice and

encouragement that he provided me at all stages of the undertaking.

I would also like to thank Dr, Freeman L. Rawson, III for his

contribution to the question-answering system, Professor Patrick Suppes

for serving as my advisor and for providing the computer facilities for

this project, and Professors Dov Gabbay and J.M.E.: Morayscik for

participating on my reading committee.

This research was supported by National Science Foundation

Grant EC-443X4.

BEST COPY AVAILABLE

Chapter I

Introduction

I.1 General Introduction

This paper describes a project concerned with the understanding

of natural language by computers. The project involves the development

of both a theoretical model of natural language processing by computer

and an actual implementation of the theory. The specific

implementation that we have chosen is a question-answering system for

elementary mathematics which uses unrestricted natural language input.

A complete explication of the theoretical issues can be found

in [22] and additional information on the project is also given in

[17]. This paper is primarily concerned with describing the question-

answering system and then discussing its basic features in the

perspective of the theoretical model.

In this chapter, I will give a general description of the

operation of the question-answerer and then discuss our reasons for

choosing this particular implementation of our theory. Chapter II

includes a discussion of the theory, a comparison with other systems,

and a section on transformations. Chapter III gives a more detailed

discussion of the components of the system and the final chapter

contains a listing of all the syntactic rules with their associated

1

semantic functions and a few brief comments on each group of rules.

The APPENDIX contains examples of questions currently answered by the

question-answering system.

1.2 Basic Components of the System

There are five basic components of the system. 1) CONSTRUCT is

a SAIL program which provides the interface between the components and

handles the actual parsing. 2) The Scanner which is a part of

CONSTRUCT preprocesses the input using both a dictionary of lexical

categories and a file, called the TRANSL file, of strings of words that

require special preprocessing. 3) The grammar is a context-free

grammar (cfg) read into the program at runtime. 4) Each rule of the

grammar has an associated semantic function whose explicit arguments

are the meanings of the elements on the right-hand-side of the rule.

The function when evaluated returns the meaning of the left-hand-side.

5) The result of the semantic pa .:se. which is called the semantic

construction is passed to the Evaluator which is programmed in LISP.

It evaluates the semantic construction and returns the answer.

1.3 Choice of Subject Matter

Our decision to implement the ideas we had about natural

language processing in a question-answering system had several

motivations. First, the question-answering format provides a thorough

2

work-out for all the components of the system and also produces hard

results by which the correctness of the various components can be

judged. In order to answer a question correctly each part of the

system must perform its job well. First the analysis by the syntactic

and semantic components must correctly determine the i:Janing structure

of the question; and then the evaluation routines together with the

data base must produce the answer based on the meaning structure

provided by the natural language processing components. If a system

does not implement question-answering, its analyses of individual

sentences may appear to be intuitively plausible and the data base to

be well-integrated, while in fact, the analyses may not be detecting

all the subtleties of meaning and the data base may not include all the

proper inter-relationships. For example, systems which on the surface

appear to be giving correct analyses of input sentences may not be able

to support adequately such constructions as quantification, inference,

or belief structures. Of course, a close theoretical study of a given

system will reveal its capacities and limitations regarding these sorts

of constructions and systems should be so scrutinized, but implementing

question-answering provides an additional objective practical way of

gauging a system's power.

A motivation very similar to ours is given by Woods for his

airline schedule question-answerer in [27]:

The objective of the research described here
has been to develop a uniform framework for
performing the semantic interpretation of English
sentences. It was motivated by the fact that,

3

although there exists a variety of formal parsing
algorithms for computing the syntactic structure of
sentences, the problem of using this information to
compute their semantic content remains obscure. A
question-answering system provides an excellent
vehicle for such a study, because it forces
consideration of semantics from the point of view
of setting up correspondence between the structures
of a sentence and objects in some model of the
world (i.e., the contents of the data base).

Another obvious motivation for choosing a question-answering

system lies in the ultimate practicality of a working question-answerer

especially in our chosen subject area of elementary mathematics. And a

third crucial motivation is the desire to extend our efforts from the

analysis of natural language to the generation of natural language.

This has not yet been implemented, but the system that we have

developed thus far provides a good basis for the task of generating

natural'language answers to questions.

Our next necessary choice was the subject matter for the

question-answerer. Various subjects were considered and five main

aspects of each were evaluated:

1) The subject matter itself and how it could be
represented and dealt with as a data base;

2) The fragment of natural language commonly used
to pose questions and state facts about the subject;

3) The type of questions most commonly asked and
their amenability to computer-answering;

4) The ease of extendability of the finished system
to other subject matters;

5) And finally, the potential use that might be
made of a question-answerer in the area.

4

Elementary mathematics is a good choice in each of these

respects. The subject matter is well-defined and easily represented as

a data base, A wide range of questions can be answered without

requiring a large number of facts in the data base. The need for

massive factual data was our basic reason for rejecting such topics as

geography which are suitable in other respects. Minsky discusses the

reason why mathematics is so often chosen as subject matter in [10].

It is not that games and mathematical problems
are chosen because they are clear and simple;
rather it is that they give us, for the smallest
Initial structures, the greatest complexity, so
that one can engage some really formidable
situations after a relatively minimal diversion
into programming.

Elementary mathematical data with the exception of some tabular

information used for unit conversions, etc. is largely procedural. We

use two basic data types, sets and functions, This division cuts

across the boundaries of traditional parts of speech. Verbs like 'add'

and 'multiply', adjectives such as the comparative adjectives, and

nouns like 'factor' and 'area' are all represented as functions. Other

adjectives such as 'even' and 'prime' and nouns like 'number' and

'fraction' are dealt with as constructive sets which are represented by

characteris-cic functicns, This means that every mathematically

substantive word in the vozabuiary (with the exception of those related

to tabular information) will be represented in the data base as a

function, either a primitive mathematical function which can be applied

5

to its argument(s) or the characteristic function of a set. (See

Chapter II for a discussion of other data types which can be used if

the subject matter requires them.) To handle mathematically (although

not necessarily grammatically) simple questions, it is not necessary to

store any information about the inter-relationships among these

functions or any composite functions. The semantic component handles

the various combinations. For example, it is not necessary to have an

EVENFACTOR function. Consider the following two questions:

1) Is 2 an even factor of 6?
2) Does 6 have any even factors?

In the first case, the FACTOR function is applied to 6 and the

result is the set (1,2,3,6) is intersected with the set of even

numbers by the semantic function for intersection yielding the set

[2,6); then the semantic function for subset checks if [21 is a subset

of (2,6).

To answer the second question a transformational semantic

functiot is used. The argument to the FACTOR function, 6, is not

contained in the noun phrase and is inaccessible to it at the NP-level.

So a transformational semantic function creates an EVENFACTOR function

for use at the higher level. (For details of this type of semantic

function see Section 11.3). Note that the EVENFACTOR function does

not need to be permanently stored in the data base rather it is created

at runtime. In order to handle more mathematically complex questions,

some heuristic information about the intersections of various sets will

be needed, For example, the system is now programmed to know that the

intersection of 'even' and 'prime' is the singleton set (2).

6

Another desirable feature of elementary mathematics is that the

subject matter is self-contained. Previous implementations of this

approach to semantics [21] involved the analysis of corpora of child

utterances. It was discovered that doing any real work- with the

semantics would have necessitated the building of a model of the

child's interactions with her environment. The decision was made that

more intense study of the natural language itself should be the thrust

of the investigation at this stage. So we have chosen a project that

does not involve modeling of an individual's interactions with the

world. However the closely related problem of dealing with the context

of the complete dialogue with the computer cannot be avoided by choice

of subject matter. There is always the possibility in a question-

answerer that one question will be related to a previous question or

answer by an anaphoric reference. Again, while recognizing this as an

extremely important problem, we have decided that it is not a suitable

problem for our first stage of development. A survey of questions in

elementary textbooks proved that in fact we could compile a large

sample set of mathematical questions which were independent of their

context. Note that this does not imply that our semantic functions

will have more than the usual difficulties with these constructions

which are a problem for any system, Preliminary work has shown that we

will he able to write the appropriate semantic functions for context-

checking. It is simply a mrIttei oE elloosin,, a manaFeable set of

problems for the initial development of the system.

7

The fragment of natural language used to talk about elementary

mathematics does contain all the traditional parts of speech and all

the varied sentence formats. Also, the vocabulary is limited enough to

be manageable but sufficiently rich to cover many linguistically

interesting constructions. We found very few grammatical constructions

that were peculiar to this subject matter. This means that to change

or extend the scope of the question-answerer will require extension

rather than replacement of the current grammar. For example, a large

part of our efforts have been devoted to prepositions and sentences

using the verb 'to have'. Both of these are surely problems common to

all substantial fragments of natural language. The fact that not all

senses of the verb 'to have' and only fourteen of the prepositions were

found to occur in an elementary text on mathematics [23] gives us a

workable starting point for these constructions.

It is desirable to have objective sources of sample questions

so that a wide range of sentence formats will be included. There are

two readily available sources of elementary mathematics questions.

During the developmental stages, a good source of questions is

elementary textbooks. However, now that we have a working model, we

plan to develop a CAI program using the question-answerer so that we

can gather sample questions from elementary students. We expect the

new questions to be less standardized than those from the textbooks

with respect to vocabulary, grammar, and subject matter. This will

provide raw'data for the second stage of the project in which we will

8

be concentrating on such major problems as anaphoric reference,

habitability, learning and ambiguity.

Also, we expect that testing the system with elementary

students will confirm our hypothesis that elementary mathematics is a

suitable subject for a practical question-answerer. We conducted an

experiment with elementary students in which we simulated a question-

answerer for Black History and the results were discouraging. The

questions asked, in general, called for value judgments and causal

explanations that were well beyond the range of current work in

artificial intelligence.

9

Chapter II

The Theoretical Model

II.1 Comparison with Other Systems

Early programs for natural language processing were concerned

primarily with syntax. The current trend is to place the primary

emphasis on semantics. Our major interest is in clarifying the

relati-snship between syntax and semantics. This issue is discussed by

Katz in [8].

...the semantic competence of a speaker
enables him to obtain the meaning of new sentences,
and other new compound syntactic constituents, as a
compositional function of the meanings of their
parts and grammatical relations. Since infinitely
many possible sentences are novel arrangements of
familiar lexical items, this assumes chat the
speaker's semantic competence provides him with
meanings for each of the finitely many lexical
items of his language and a set ..)1 rules for
combining the meanings f linguistic constructions
to compositionally corm the meaning or each
sentence of his language and each compound
constituent of each sentence.

Winograd 126] comments chat "Osten the most important clues

about what is being said are the syntactic clues." These "clues" form

the basis of our semantic functions. Each syntactic construction which

is represented by a rule in the grammar has its own semantic function

that shows how cc obtain the meaning of the construction from the

10

meanings of its parts. It is necessary to make a distinction not made

by Katz in the above passage between lexical items which have their own

"meaning" and lexical items such as determiners, auxiliaries, relative

pronouns, etc., which function like the syntactic structure as a whole

to give guidance as to how the meaningful elements are to be combined.

For example consider the following question and the rule which parses

it:

EX1: How many factors of 12 are even numbers?
RULE1: Q <- /HOWMANY/ NP LINK NP (CARDINALITY (I ;2; ;4;))

[Note: CARDINALITY and I (intersection) are primitive
semantic functions.]

The numbers enclosed in semi-colons in the semantic functions

refer to the position of the elements on the right-hand-side of the

rule. The two NP's will be parsed at a lower level and the semantic

functions for them inserted in the proper position before the complete

semantic construction for the question is passed to the evaluator, The

important point to note is that each question which has this basic

syntactic form can be answered by intersecting the two sets and finding

the cardinality of the intersection.

The terminology here is perhaps misleading. The name 'semantic

function' can refer to one of three things depending on the context.

We often refer to the primitive semantic functions such as CARDINALITY

and I as simply semantic functions. We also speak of each grammatical

rule as having an associated semantic function such as (CARDINALITY (I

;2; ;4;)) which was given above. And finally, each sentence parsed

11

will have its own final semantic function usually called the semantic

construction which is passed to the evaluator. For example, in this

case the semantic construction will be:

(QUS (CARDINALITY (I (APP @FACTOR (LST 12)) (I @EVEN @NUMBER)))).

[Note: QUS is the semantic function used to indicate
that the input was a question. APP is the semantic
function used for applying functions to their
arguments, in this case, the FACTOR function to 12.]

This semantic construction shows us how the four meaningful words in

the original sentence can be combined to find the meaning of the entire

sentence.

There are two basic types of primitive semantic functions. The

first type are the substantive semantic functions. Many of these are

standard set-theoretical functions like cardinality, intersection,

union, set difference, and set complement. There are also functions

for dealing with comparatives and ordinals. The function APP applies

mathematical functions like FACTOR that are found in the original

sentence to their designated arguments. A function called EXIST checks

whether or not a set is empty. The function ENMF checks the

cardinality of a set against a given number and is used for

constructions like 'the 6 factors of 12'. There are also semantic

functions which are designed specifically for this subject matter.

These include functions for each of the basic arithmetic operations and

special functions for dealing with mixed numbers, percents, expressions

of units of measurement, etc. Many more of these various sorts of

substantive semantic functions will be discussed in the examples in the

following chapters.

12

The other type of primitive semantic functions are used to

establish a control structure for the evaluation phase. We generally

refer to these functions as transformational semantic functions because

they, in our system, deal with the constructions which are often viewed

as more complicated transformations `of simple constructions. The

transformed construction differs from the "kernel" by having its

elements out of the standard order and/or having some of its elements

suppressed, There are of course other possible related features of the

transformed construction such as a change of voice from active to

passive or a change of verb from 'is' to 'have'. I will discuss the

details of our handling of the various kinds of transformations in

Section 11.2. The basic problem with handling non-standard word

orders is that the evaluator which is written in LISP uses recursive

inside-out evaluation. Therefore without the transformational semantic

functions to provide a control structure the evaluations would be made

in the wrong order. This is particularly obvious in questions like

Does 6 have a factor of 2?

which is a "transformation" of the question

Is 2 a factor of 6?

Special semantic functions are used for noun phrases appearing with the

verb 'to have'. Part of their job is to ensure that the evaluator will

not attempt to apply the function, which in this case is the FACTOR

function, at the innermost level because its argument is in fact

somewhere else in the sentence. Through the use of these functions

13

transformations can be handled without sacrificing the recursive

inside-out character of the evaluator.

I will first discuss the advantages of our approach to some of

the common problems of natural language processing; and then I will

discuss specific criticisms that have been levelled against the use of

context-free grammars for natural language processing and show how the

addition of semantic functions enables us tc overcome the customary

problems with cfg.

This method of approach to the cmstruction of a natural

language understanding and generation system has advantages in three

main areas: clarity, flexibility, and extendability. As mentioned

above, our major interest is in clarifying the relationship between

syntax and semantics. This does not mean that we believe there are two

sharply defined, distinct, and independent elements of language which

have traditionally been called "syntax" and "semantics". It is clear

that the two work together. Some systems sull as those of Winograd and

Woods, as a result of recognizing this interaction, have eliminated

distinct phases of analysis cot:osponding to syntax and semantics.

Instead syntactic and semantic routines can tail each other and the

results determine how the analysis will proceed, The disadvantage of

this total interaction is a loss in clarity, The actual mechanisms of

interaction may be buried deep in the program. The basic structure of

our system can be understood without examining any of the specific

programs. The interaction between the syntactic and semantic features

of the language is captured in several ways.

14

First, rather than writing an adequate grammar for the language

we are dealing with and then imposing a semantics on the grammar, we

have instead developed a fairly nonstandard grammar which is completely

responsive to the semantic needs of the analysis. Each rule has been

written with a clear idea of which semantic function will be used and

consequently which elements of the input sentence need to be parsed at

that level for use as arguments to the semantic function. For example,

noun phrases containing the preposition 'of' like 'factors of 6' and

'denominator of 1/2' should not be parsed as a noun followed by a

prepositional phrase. The important semantic insight about these

phrases is that they contain the name of a function which is stored in

the data base and the argument to the function both of which are needed

as arguments to the APP (apply) semantic function. Therefore we might

have the rule:

RULE1: NP <- FCN /OF/ NP (APP ;1; ;3;) .

[Note1: The actual rule is more complicated to account
for modifiers and lists of function names or
arguments.]

[Note2: /OF/ is the lexical category for the

preposition 'cf'.)

Howeve, certain ocher prepositions in this position can be parsed by

the rule:

RULE2: NP < N PREPHRASE (I ;1; ;2;)

[Note: The category FCN is used for nouns which name
functions and the category N for nouns which name
sets.]

15

Examples of this type of preposition are 'between' (ex. '4 is

between 3 and 5'), 'in' (ex, '8 is In the set (7,8)), and 'before' and

'after' (ex. '6 comes before 7'). These prepositional phrases can

occur in several grammatical positions in the sentence, but in each

case the meaning of the prepositional phrase itself can be determined

regardless of the context. The result cf evaluating each of these

prepositional phrases will be a set. Thus to handle the noun phrase,

'the prime between 6 and 10', we can use RULE2 which will intersect the

set of primes with the set of numbers between 6 and 10. It is not

necessary to spell out at the level of RULE2 which particular

preposition in this category will be used. The intersection function

will have the sets it needs passed up c, it frm a lower level. In

RULE1, the APP function does explicitly need to see that the

preposition is 'of' and it needs both the noun phrase before and the

noun phrase after the preposition to use as arguments.

This recognition that all the relevant arguments to a function

need to be parsed at the same level has lead to a grammar with much

flatter trees than are usually associated with context-free grammars

used for natural language processing, For example, this grammar does

not contain the standard rule:

S <- NP VP.

It would be extremely difficult to write a good semantio tunction for

this rule. It is necessary to know more about the verb in order to

determine which semantic function is needed, and moreover, if there is

a noun phrase in the VP, the verb will be determining the relationship

16

between the two NP's so they will both be needed as arguments to the

semantic function established by the verb and will both need to be

parsed explicitly at the same level.

A second way in which our system is able to have separate

syntactic and semantic components which act in parallel rather than

interactively at runtime is by not holding the traditional conceptions

of syntax and semantics sacred when making the decision as to which

component will handle any given aspect of the language. For example,

we have not as yet needed to implement routines for checking agreement,

but they will be implemented as semantic functions rather than as part

of the grammar since a cfg cannot deal with agreement satisfactorily.

The semantic functions also handle transformations which is a

traditional syntactic function, The primary way in which the grammar

incorporates traditionally semantic features is through the use of

"semantic categories" rather than the standard lexical categories.

There have been several types of semantic categories used in

recent years. Katz [8] has proposed that the dictionary entries for

words should contain "lexical readings" which include the various

"senses" of the word, for example, a given noun might be a physical

object, inanimate, etc. This information can then be used for

disambiguation. A combination of "selection restrictions" and

"projection rules" eliminates those interpretations of sentences which

are based on inconsistent "senses". For example, Katz gives the

following reason for the rejection of the incorrect interpretation of

the sentence:

17

(1) The man hit the colorful ball.

, (1) has no meaningful interpretation on
which 'ball' has the sense of a social activity,
even though it has this as one of its senses in the
dictionary, because of the conceptual incongruity
of relating a social activity to a physical action
such as hitting by making it the object on which
the action is performed.

There have been various objections to this approach. Palme

[12j objects on two grounds, First he points out that it cannot

handle disambiguation of sentences like "He went to the park with the

girl." which require contextual information tot disambiguation. Katz,

in fact, states that this aspect of his system is not intended to

handle this type of ambiguity. Pelmets second objection may be more

serious. He believes that the very large complex dictionary needed for

this sort of system will duplicate information which needs to be in the

data base. This objection can only be evaluated on the basis of a

particular implementation although it does seem, as Palme claims, to be

more natural to have all the information unified in a single data base.

Minsky [10] also believes that these semantic categories, which Katz

calls "lexical readings", are not truly "grammatical" categories and

that the information which they convey should instead be included in

the form of a world model in the data base. Minsky's argument is that

while relations taken one at a time could be handled these multiple

categories lead to interacting relations which require a veiy powerful

logic.

18

Katz' approach is the most common way of introducing semantic

information at the level of the dictionary, but it is not the approach

that we have taken. Our approach is rather a combination of two other

methods which have been used in recent systems. One method is for

functional words and the other for the substantive words. As noted

above, the grammar has been written to facilitate the writing of the

appropriate semantic functions. In line with this objective, each

functional word has its own lexical category assigned to it in the

dictionary. Thus, at the point that the word is parsed, the semantic

procedure associated with the functional word can either be applied

immediately as is the case in DEACON [24] [5], which also gives each

functional word its own lexical category, or encoded in the semantic

construction for the sentence as is done in our system. An example is

the preposition 'of'. The semantic function in our system for 'of' is

APP. The rule is:

NP <- FCN /OF/ NP (APP ;1; ;3;)

So the semantic construction for 'factors of 6' will be

(APP @FACTOR (LST 6)).

The data in the DEACON system are stored in ring structures.

The semantic procedure applied when 'of' is parsed is to substitute for

the whole phrase the third member of the ring containing both the noun

preceding and the noun following the 'of' in the input. For example,

if the input is "commander of the 638th battalion", procedures will

first be used to eliminate the determiner and also to eliminate the

word 'battalion' as being redundant, thus leaving "commander of 638th".

19

In the data base, there will be a ring connecting 'commander', '638th',

and 'Jonathan M. Parker', The rule for 'of' will substitute 'Jonathan

M. Parker' for 'commander of 638th',

Our handling of the classificatiOn of substantive words is

based on insights very similar to those of Sager [18].

The discourse in a science subfield has a more
restricted grammar and far less ambiguity than has
the language as a whole, We have found that the
research papers in a given science subfield display
such regularities of occurrence over and above
those of the language as a whole that it is
possible to write a grammar of the language used in
the subfield, and chat this specialized grammar
closely reflects the informational structure of
discourse in the subfield. We use the term
sublanguage for that part of the whole language
which can be described by such a specialized
grammar,

The sublanguage grammar provides a method for
developing the particular ward classes (the

specialword sets) and the relations among these
classes which are of special significance in a

given science subfield, i e-, which are the
linguistic carriers cf the specific knowledge in
the subfield- Yet these caLegc:Aes and relations
are not determined a priori for ale subfield-
Rather, they are the interpfecacion of the formal
grammatical categories and .s,lations of the

sublanguage grammar Th:;s, in the pharmac,:logical

sublanguage which was investigated, the two noun
subclasses i (containing, e,g. ion, Kt; and G
(containing, e.g,, drug, digitalis, glycosides),
which in the subfield have the significance "ions"
and "pharmacological agents," respectiely, and
play crucially different roles in the physiological
mechanisms being described, are obtained as

separate classes because they occur with different
classes of verbs: e.g,, I as the object of such
verbs as transport, G as the subject of such verbs
as inhibit- It then turns out that the subianguage
word classes, which are established on the grounds
of what other grammatical classes they occur with

20

(as subject, object, etc.), are the linguistic
counterparts of the real-world objects, events, and
relations which are studied and described in the

given subfield.

While the phenomenon she describes is certainly more pronounced

in subfields, we have found that it does occur in natural language as a

whole. Sager has performed several analyses which we have not that

have very interesting results, She claims that as a result of either

string decomposition, transformational decomposition, or a

transformational lattice, the three kinds of vocabulary appear in three

distinguishable portions of the decomposition. The bottom nodes

contain the specific vocabulary of the subfield, the intermediate nodes

the general scientific vocabulary and the top nodes the vocabulary

expressing "the scientist's conclusions, doubts, speculations,

She obtains another interesting result by comparing in"estigations of

current articles in the same scientific field performed at different

times, The discovery was that ,_ertain words which were new to the

vocabulary at the time of the initial study functioned as operators on

elementary sentences at chat time but later were found increasingly as

subjects of new elementary sentence types, Thus the evolution of the

grammar parallels the advance of the science, or as Sager puts it, is a

"reprPsentsticn" of the advance,

Our primary goal is to find how the grammar is related to the

meaning. Both our system and Sager's use the idea that categories can

be formed which contain words that are both naturally related to each

21

other with regard to the subject matter and naturally related with

regard to their grammatical role. This differs from Katz' approach

which is primarily concerned only with semantics. His semantic

categories are not the grammatical categories but rather are included

in the dictionary in addition to the grammatical categories. Because

the words in his dictionary have multiple semantic categories it would

be very difficult to incorporate them into the actual grammar. Also,

while certain of his "senses" such as the distinction between mass and

count nouns have a grammatical counterpart, in general unless all the

categories are built into an extremely sensitive grammar, there will

be no grammatical difference between two semantic interpretations of a

given sentence. For example, there will be only one parse of

The man hit the colorful ball.

The disambiguation of this sentence is properly part of the

semantic component in his system and in ours it will be part of the

evaluation. There is no obvious way to expect help from the grammar in

disambiguating the sentence. We are, however, concerned with finding

those areas where the grammar and semantics can help each ocher. Our

purpose for using nonstandard lexical categories is not to aid in

disambiguation but rather to aid in developing a grammar which will

produce the most correct parses with respect to the meaning of the

sentence, Of course, as a natural by-product, this carefully worked

out grnm,,,ar will eliminate a large amount of unnecessary grammatical

ambiguity, Fo° example, our system divides nouns into two basic

22

categories N (nouns that name sets) and FCN (nouns that name

functions). Given a list of noun phrases some of which may themselves

be composed of lists and at least one of which contains the preposition

'of', without the distinction between N's and FCN's there will be

ambiguous parsings. The presence of 'of' indicates that there is a

function name or list of names and the argument(s) to the function(s).

Without the category FCN to pinpoint the function name(s) in the list

of noun phrases, the rules would be

NP <- LISTOFNP
NP <- NP /OF/ NP

thus allowing the grammar to parse very strange lists of noun phrases

by choosing incorrect sublists to fill the two slots of function name

and argument. This shows how the grammar and semantics can help each

other. The two types of nouns must be evaluated differently.

Identifying the type at the syntactic level thus provides very useful

information to the evaluator through the semantic function.

Historically in our system the distinction was discovered while writing

the evaluation routines, However, the distinction is also a very

important one in the grammar. The two types of nouns in isolation

never have the same grammatical role although a noun phrase which

contains an FCN and its argument like 'factors of 6' will evaluate to a

set and therefore can be used in the same position as an N except that

it will never function as an appositive noun. Thus the distinction is

necessary in the grammar to prevent senseless ambiguities.

23

Woods in [27] points out the same distinction when he discusses

functional and non-functional noun phrases, However, his airline

schedule program does not utilize the grammatical features of these

phrases to determine the semantics, He lists seven of the N-rules for

functional noun phrases and one sample noun phrase for each. For

example,

N6 1-(G8:(1) = (departure time) And
2-(G10:(1) = of and FLIGHT ((2))) and
3-(G10:(1) = from and PLACE ((2)))
=> DTIME (2-2,3-2):

e.g., "the departure time of AA-57 from Boston".

The entire seven sample sentences for the rules are:

N6 The departure time of AA-57 from Boston
N7 The arrival time of AA-57 in Chicago
N8 The operator of AA-57
N9 The time zone of Boston
N10 The number of stops of AA-57 between Boston and Chicago
N11 The type of plane of AA-57
N12 One-way first-class fare from Boston to Chicago.

This indicates that each such noun-phrase has its own N-rule in

his system. In NIO, Woods treats "number of stops" as a single

function. Considering that both "number of" and "stops of" can be used

independently of each ocher, I believe that these examples contain

eight rather than seven function names, The examples do bring up a

problem that we have not had with our subject matter. At least some of

the function nouns in these examples can be used in other contexts as

set nouns, For example, time zone can be a function taking the name of

a place as argument and returning the time zone of the place, but time

zone can also be viewed as a set containing the names of all the time

zones as in 'List all the time zones!' To include these nouns in our

24

system would necessitate giving them the multiple lexical category of

N&FCN, but would probably not lead to grammatical problems or to

problems in the evaluator if both representations, as a function and as

a set, were stored and the correct one selected on the basis of the

parse. However, a more serious problem would arise with questions like

'What are the time zones in the United States?' This clearly is a

function and yet our current grammar would parse it only incorrectly as

a set noun. The semantics of the sentence is clear which indicates

that our grammar does not yet include all the grammatical formats

associated with function nouns, All of the nouns which can only be

function nouns are found only with the preposition 'of' or in one of

several formats used when the main verb is 'have' (see Section

11.3). However preliminary work in the area of time and calendar-

type problems shows that there is an area of elementary mathematics

which does use nouns that have both representations and there are more

grammatical options associated with them. For example,

a) Which month comes after March? -- set
b) What is the number of months in a year? -- function
c) What are the months of the year? -- function

A preliminary guess would be that these nouns when used as

function names can use either the preposition or 'of'. It is

interesting, although not surprising since there is also a set

representation, to note that these functions seem to all be

implementable as table lookup procedures. This indicates another

correspondence between the grammatical structures and the subject

matter.

25

By writing a separate rule for each functional noun phrase

found in his subject matter, as it appea.:s he has done, Woods fails to

utilize the common grammatical features of these nouns phrases which

indicate the similarity of semantical treatment. Not only is this

inefficient but it also necessitates the writing of new rules as the

subject matter is extended. In our system, new function nouns need

only to be added to the data base and the dictionary. Four of the

eight examples that Woods gives could be handled by our current rule:

NP <- FCN /OF/ NP (APP ;1; ;3;)

These are: operator, time zone, number, and type of plane.. The other

four examples contain an additional prepositional phrase which gives

the PLACE(s). A grammatical slot would need to be added to our rule to

account for this and probably some other modification made to prevent

ambiguous parsing of the prepositional phrase.

The use of the two categories N and FCN is extremely useful

both to the precision and clarity of the grammar and to the correct

writing of the semantic functions. The semantic categories used by

Katz focus on the individual words in the vocabulary, Our system

instead focuses on each of the categories like noun, verb, adjective,

etc., and tries to discover general patterns within the use of that

category which form the basis for interesting grammatical and

correlative semantic distinctions, Since Katz' semantic categories

operate on individual words and the words in a group like the noun

group may have overlapping categories, his system has little utility as

26

a grammatical device; it is intended to serve in the semantic phase of

analysis. There are undoubtedly large numbers of sentences like "The

man hit the colorful ball." which must be disambiguated in the

evaluation phase on the grounds that one of the interpretations makes

no sense. (See Section 111,4 for a further discussion of

ambiguity), However before a given possible interpretation can be

ruled as either meaningless or meaningful but not as appropriate in the

context as another possibility, the set of possibilities must be

generated. One useful way of looking at the difference in emphasis

between our system and other systems is to say that many recent systems

have concentrated their efforts on the analysis of the possible

interpretations while our primary emphasis is on their generation.

Winograd [26] discusses three models of semantics:

categorization model, association model, and procedural model. Our

system like his falls under the procedural category. Both the

categorization and association models make relatively little use of

syntax. The categorization model is based on the semantic categories

of Katz and Fodor and is used in systems like Schank's conceptual

parser (20]. Schank has extended the semantic category system to

include for each sense of a word how that word relates to other words,

for example, whether or not it takes an object and if so what category

the object must be, The association model which is used by Quillian

[14] [15] stores the content words in the vocabulary in a network with

links between the words to represent their associations in the subject

27

matter. The meanings of phrases are found by finding the links between

the content words of the phrase. A third method not mentioned by

Winograd is the pattern recognition method. This was used in the ELIZA

program [25] and more recently by Colby et al, [4]. Here the input is

scanned for certain key phrases. The assumption being that a large

part of natural language is merely fillers and unimportant idiomatic

phrases. Each of these three methods concentrates primarily on the

semantics. The semantic routines simply pick out anything they might

need from a rough parse; there is no deep systematic grammatical

analysis done. Winograd characterizes this attitude by saying:

There is also a complexity of syntactic
parsing. The semantic connections might give clues
to the underlying structure which would change the
parsing task into simply checking the plausibility
of the relations, and cleaning up the details.
This is the approach taken by both Schank and
Quillian.

We view the role of syntax as much more important than this.

Each grammatical structure indicates the semantic procedure necessary

to evaluate its meaning, Based on the grammatical parse of a sentence,

a semantic construction is assigned to it, The purpose of the semantic

construction is to give the evaluator the necessary functions and the

control structure for applying them., It is at the level of the

evaluator, which has access to the data base including the meanings of

words and the context of the conversation, that semantic disambiguation

can be done if necessary.

28

It is because of this close relationship between the grammar

and the semantics that the lexical categories must be carefully chosen

so as to maximize the information that can be obtained from the parse,

The basic categories for nouns are N, FCN, and 2FCN. The category 2FCN

is for function nouns like 'intersection' and 'sum' which always take

more than one argument. In addition there are noun categories which

are analogous to FLIGHT and PLACE which were used in the example from

Woods' system. These are categories which add both clarity and

precision to the grammar. Examples in our system are: GEOFIGURE for

the names of geometric figures, i.e., 'rectangle'; UNITS for units of

measurement like 'ounce', 'foot', 'tablespoon', etc.; NUNITS for

'ones', 'fives', and 'tens', etc, which are evaluated differently than

regular units; and /3D/ for nouns like 'length', 'height', and 'width'.

These categories are probably not necessary to prevent grammatical

ambiguity but for developmental purposes they make the grammar much

more readable and specific semantic functions can be assigned to the

rules before the more general procedures are discovered.

The adjective categories are: ADJ for regular adjectives like

'even', 'finite', and 'prime'; /OPER/ for 'square', 'cubic', etc..;

ORDADJ for ordinal adjectives like 'first' and 'second'; COMPADJ for

the comparative adjectives like 'longer' and 'largest'; and MEASWORD

for dimension adjectives like 'wide' and 'high', There should also be

a category for adjectives taking two or more arguments like 'disjoint'

and 'equal'. Each of these has its own semantic function associating

29

it with the noun it modifies. The ADJ's are sets which are intersected

with the sets represented by the ric,uns: The function for ORDADJ

chooses the appropriate element from a set based on its ordering. The

function for COMPADJ chooses the largest or smallest from a set of

alternatives. There is another function for the combination of an

ORDADJ and a COMPADJ as for example 'the second largest factor of 12'.

One important category ci adjectives has not occurred in our subject

matter. These adjectives express relative judgments about the noun

that they modify, Two examples given by Sandewali [19] are:

"the little elephant" (it is little for an elephant, but
it may be big for an animal)

"the bad teacher" (he is bad as a teacher, but he may
be good as a father),

A discussion of a formal theory for these adjectives can be found in

Montague [11].

The categorization of verbs is crucial in conversational

speech, but has not been carefully worked on in our system due to the

lack of variety of verbs in the present vocabulary.

One other important category in our system is ARITHREL for the

arithmetic relations. These include 'less than', 'less than or equal

to' (and similarly for 'greater'), 'equal to', 'equivalent to', and

'divisible by', The variations like 'smaller than' and 'littler than'

and the various abbreviations are handled by the TRANSL file. The

prepositions are also eliminated by the TRANSL, The ARITHRELs are

treated as functions. Thus 'less than 6' will be parsed by the rule

ARITHRELS <- ARITHREL NP (APP ;1; ;2;)

30

The result of applying the LESSTHAN function to 6 is the set of all

real numbers less than 6 (represented of course by a characteristic

function since it is an infinite set). These phrases can appear in

several posiLlons. Examples are:

EX1: Which factors of 12 are less than 6?
EX2: List all the factors of 12 that are less than 6?
EX3: Is 2 < 6?

The primary semantic function for EX1 and EX2 will be intersection and

for EX3 will be subset. Basically these phrases which evaluate to sets

can be used in the same ways as NP's which are sets, ADJ's which are

sets, and the prepositional phrases like those with 'between' and

'before' which evaluate to sets. This greatly simplifies the grammar.

All of these various phrases which evaluate to sets are included in the

grammatical category SUBST:

SUBST <- NP
SUBST <- ADJ
SUBST <- ARITHRELS
SUBST <- PREPP .

Thus the three general rules used in the derivations of the examples

given above

Q <- INTER NP LINK SUBST
RELPRONS <- RELPRON LINK SUBST
Q <- LINK NP SUBST

will parse a large variety of sentences. It is also possible by using

rules for lists of SUBST's to parse lists containing elements from the

different types of phrases, for example:

Which factor of 12 is LEQ 6, divisible by 3, and even?

In addition this structure provides a convenient way to handle

negation, The rule for 'not' is

31

SUBST /NOT/ SUBST (C ;2;)

C is the semantic function for set complement. Examples of this are:

Give all the factors of 12 which are not divisible by 3!
Which prime number is not odd?

Careful attention to the semantics of a given grammatical

construction leads to clarity in the grammar. The grammatical clarity

is aided by both the lexical categories like N, FCN, ARITHREL, etc.,

and the grammatical categories like SUBST which will be discussed in

detail in later sections, In both cases the motivation for creating

the categories is semantical as well as grammatical due to the close

relationship of the syntax and the semantics,

Our goal has been clarity not only within the components of the

system but for the system as a whole. The clear separation between the

components of the system has not only added to its clarity but also

furthered our other major goals of flexibility and extendability.

Flexibility is desirable in a system not only during the

developmental stages but also as a property of the 'finished' product

because of course a system is never really finished; one of any

system's most important features is its extendability. The more

flexible a system is the more easily it can be extended.

There are two basic types of additions that might be made to

our question-answerer. The first are additions to the vocabulary and

subject matter ranging frcm the simple addition of synonyms which can

be handled entirely at the level of the TRANSL through the addition of

new function words which need to be put in the dictionary and the

32

function stored in the data base to the addition of completely new

types of subject matter which would require new vocabulary, grammatical

rules, semantic functions, and evaluation procedures. These sorts of

additions should present no difficulties, The second basic type of

extension would include substantive changes in the power of the system

itself. These changes might be in areas like habitability, learning,

modeling of the world and/or context of the conversation, and anaphoric

references.

In discussing the question of clarity, examples were used from

the system as a whole and from the syntactic and semantic components

but not from the evaluation component. The evaluator is written in

LISP, and as might be suspected, clarity is net its strong point.

However this is the only area of our program which might in any sense

be thought of as a 'black box' and it is certainly no less clear than

the comparable components of other systems, In fact the semantic

construction for a sentence is available as a sort of summary or

outline of what the evaluator will do; so in chat sense our program

does provide a clear concise way to understand the general workings of

the evaluator, However, the strong points of the evaluator are its

flexibility and its independence fre,m the natural language processing

components.

One advantage of the independence of the components is that

they can be programmed in different languages according to the

appropriateness of the programming language to the task, The

33

interfaces, the scanner and the parser are written in SAIL, which is

fast, efficient and less space consuming, The evaluator which deals

with recursive functions many of which are created at runtime is

written in LISP. The system is run on the PDP10 with TENEX and the

fork structure of TENEX facilitates the running of separate components

possibly in different languages. The problem of needing different

programming languages for different casks in the system is discussed by

Bobrow in [2].

There are other advantages to the independence of the

evaluation component from the natural language processing component.

One area in which interesting work is being done is the area of

representation of knowledge. As breakthroughs are made in this area,

it will be possible for question-answerers to deal with much broader

subject areas and in a much more efficient way. However, if the method

used in the language processing component is based on the properties of

the data base, then in order to take advantage of new ways of

representing knowledge, the whole syscem must be rewritten. Woods

discusses the importance of the independence of these components in

[27],

It seems that for efficient processing,
different sorts of data require different sorts of
data structures. A promising method f.:Jr achieving

reasonable efficiency in large less restricted
universes of discourse is to provide the system
with a variety of different types of data
structures and special purpose deduction routines
for different subdomains of the universe of

discourse. Integrating a variety of special
purpose routines into a single system however,

34

7':eqeires e. uniform syntactic aud semantic

framework. In general it is only after parsing and
semantic inteeonretation have been carried out that

such a system would be able to tell whether a

sentence pertained to a given subdomain or not.

Therefore, if the syntactic and semantic analyses

were different for each subdomain, then the system

would have to parse and interpret each sentence

several times by different procedures in order to

determine the appropriate subdomain. Moreover,

there can be sentences that simultaneously deal

with two or more subdomains, requiring a semantic

framework in which phrases dealing with different

subdomains can be combined.

Another important point raised here is that "different sorts of

data require different sorts of data structures". This has not been

implemented in most systems. For example, Quillian in discussing his

Teachable Language Comprehender (TLC) says in !15):

TLC's second important assumption is that all

a comprehender's knowledge of the world is stored

in the same kind of memory, that is, that all the

various pieces of information in this memory are

encoded in a homogeneous, well-defined format.

TLC's memory notation and organization constitute

an a::tempt to develop such a format, which is

uniform enough to be menage able "oy definable

proedures, yet rich enough to allow re;_,:esentation
of anything that can be stated natural language,

It amounts essentially to a highly

intetconneoted network of nodes and relations

between nodes.

Historically, systems dealing with qulte restricted subject

matters and using evaluation techniques peculiar to the subject matter

have been reasonably successful while sys:ains attempting eo cove,r

diverse subjects using a generalized technique which will encompass

35

different types of knowledge have been less successful. Woods'

suggestion is that a general system instead of trying to find one

method which will work for everything should recognize the differences

in types of data and incorporate a number of different evaluation

procedures in one program.

Our evaluator has the facility to do this. The data in our

system can be stored in many different ways. Most of the data

currently used are elementary math functions and therefore are well-

suited to being stored as LISP functions which can be called when

needed. Data can also be stored in tables and procedures involving

table lookup implemented for determining measurement equivalences, etc.

As the subject matter expands a variety of other data structures are

possible. For example, Lindsay's SAD SAM program [9] was very

successful at dealing with family relationships stored in a tree

structure. Therefore, if we added family relationships to our program

we might store the data on families in tree,; and program functions like

'father of as tree search procedures. Another common way of storing

data is on property lists; this could also be implemented. It is

however interesting to note that portions of the use of property lists

in early systems are now obsolete due to the newer technique of storing

data as functions or procedures. For example, Raphael [16] gives as an

example for SIR the description list for the number '3':

successor 4

odd yes
shape curvy

36

It is a waste of space to store the successor and the presence or

absence of the property odd for every number. It is only necessary to

store the successor function and the odd function and call them when

needed. In fact it will probably someday be feasible to call a pattern

recognition routine to determine the shape of a written number if that

is desired,

One method often used by general systems is a theorem prover.

Black [1] points out that theorem provers are designed for proving

theorems not answering questions, He and others have developed

deductive systems which are more compatible with the goal of answering

questions. However, it is still true that most simple questions can

easily be answered without any of the power of a theorem prover. In

fact, the powerful machinery may often get in the way. On the other

hand, certain questions are very well suited to handling by a theorem

prover, For this reason, we plan to add a theorem prover to our system

which can be called by the evaluator only when it is needed.

In the learning of elementary mathematics the student needs to

acquire a large amount of methodological knowledge therefore it is

reasonable to expect that a large portion of his or her questions would

be of a methodological nature, for example, 'How do you find the

factors of a number?' We have attempted in writing the evaluation

procedures for functions to program them the way a student would do

them rather than according to standard computer algorithms. We believe

that the evaluator can therefore be made to answer methodological

37

questions by analyzing its own functions. This is similar to

Winograd's proposal [261 that his blocks program, in answer to a

question about how it does something, be able to look at its own

programs and convert them to an English description like "First I find

a space, then . .

11.2 Transformations

In the previous section, I discussed a variety of capabilities

that our system has and some of the extensions that might be made. In

this section, I will discuss the transformational abilities of our

system. It is generally believed that a system based on an unaugmented

context-free grammar cannot handle transformations. First I will

explain why we do have the ability to deal with transformational

constructions and then I will show how each of the constructions which

cfg without semantic functions cannot handle are dealt with in our

system.

It is of course true that a context-free grammar does not have

the power of a transformational grammar, but the addition of the

semantic functions allows one to 'recognize' semantically a non-context

free set. Thus we have "augmented" our grammar by the addition of the

semantic functions rather than by the addition of further grammatical

apparatus. An example will make this point clearer. Consider the

grammar G whose productions are as follows, where S, A, AND B are

non terminal symbols:

38

S <- A B
B <- z
B <- B z
A <- x y
A <- x A y

n n m
where L(G)= tx y z I m,n > 01 .

This is a context-free language. However by adding semantics to

the grammar it is possible to tell for every string s, which is a

member of L(G), whether or not s is in the set

nnn
txyz in>0/

which is a context-sensitive set. Thus the combination of the

grammatical rules with the semantic functions will recognize this

context sensitive set. The semantic functions are as follows:

S <- A B T if v(A) = v(B), NIL otherwise
B <- z 1

B <- B z 1 + v(B)
A <- x y 1

A <- x A y 1 + v(A)

hence, for s in L(G),

n n n
v(s) = T iff s is in {x y z ! n > 01

This example deals with context sensitive sets but the addition of

semantic functions also can give transformational abilities. Specific

examples will be given later in this section.

There are several advantages to using a context-free grammar.

First, the format of the grammar is clear, easy to read, and

universally recognized. Second, extremely efficient parsing algorithms

39

exist for cfg. And finally, transformational grammars traditionally

define a level of analysis called the syntactic deep structure which is

described as follows by Fillmore [6]:

It is an artificial intermediate level between
the empirically discoverable 'semantic deep
structure' and the observationally accessible
surface structure, a level the properties of which
have more to do with the methodological commitments
of grammarians than with the nature of human
languages,

Our system goes directly from the syntactic to the semantic

representation, thereby eliminating the level of syntactic deep

structure.

However, there are transformations which need to be made in the

process. Woods [28] sums up the types of transformations needed as

"reordering, restructuring, and copying of constituents".

Restructuring will be discussed in detail in the next section with the

examples being drawn from noun phrases with the verb 'have'. A simple

example of reordering is the following:

C <- /DIVIDE/ NP /BY/ NP (DIV ;2; ;4;)

C <- /DIVIDE/ NP /INTO/ NP (DIV ;4; ;2;)

Thus 'Divide 6 by 3i' and 'Divide 3 into will both have the

semantic construction (DIV (LST 6) (LST 3)) reflecting the fact that

they have the same meaning,

Copying can also be done quite simply, although it is not often

used in our system because of semantic functions like CHL which will be

explained shortly, An example of copying is the following rule:

40

RULE1: NP <- DET ADP /OR/ DET ADP NP
(CHL (I ;2; ;6;) (I ;5; ;6;))

Ex. Is 2 an even or an odd number

The first occurrence of the word 'number' has been dropped by the

questioner but must be put back before it can be evaluated. The word

'number' which is the sixth element in the NP therefore appears twice

in the semantic function in the proper positions.

CHL (choicelist) is used for many of the 'or' constructions

(see Chapter IV for a discussion of lists with 'and' and 'or'.) When

the argument to one of the semantic functions begins with CHL, the

function is performed on each of the arguments in the list and an

answer returned for each. In the above example the semantic

construction will be

(QUS (S (LST 2) (CHL (I @EVEN @NUMBER) (I @ODD @NUMBER)))).

[Note: S is the subset function,]

(23 will be checked to see if it is a subset of the set of even numbers

and then to see if it is a subset of the set of odd numbers; and the

answer will be

(CHL (TV T) (TV NIL)).

The CHL is pushed outward as the evaluation proceeds. The reason for

this will be clear in the next example.

As I mentioned above, our system does not often use copying

because CHL can be used instead, The phrase 'an even or an odd number'

could be given the semantic function (I (CHL ;2; ;5;) ;6;). The result

of evaluating this portion, since the CHL is moved outward after the

41

two intersections are performed, will be the same as the result after

evaluating the two intersections in the semantic function for RULE1

above.

The CHL function could probably be viewed as either copying or

restructuring, Before I discuss more examples of restructuring in the

next section, I should mention briefly several other common criticisms

of cfg.

Woods [28] points out that

The unaided context-free grammar model is

unable to show the systematic relationship that
exists between a declarative and its corresponding
question form, between an active sentence and its
passive, etc, Chomsky's theory of transformational
grammar, with its distinction between the surface
structure of a sentence and its deep structure,
answers these objections but falls victim co

inadequacies of its own .

It should be clear from the examples used throughout this paper that

the semantic constructions for related inputs will show the deep

structure relationship,

Work has been done by Postal [13] and others to isolate

constructions found in natural languages which can be proven to be

beyond the capacity of cfg. Postal has done this for constructions

which have what he calls the property [xxl. His work was done with the

Mohawk language but he also cites as an example in English the

construction with 'respectively'. This construction is also mentioned

by Winograd [26] as one that is impossible for a cfg, His example is

John, Sidney, and Chan ordered an eggroil, a ham sandwich,
and a bagel respectively,

42

We have not included this construction in cux grammar but it could be

handled by a semantic function which counted the elements on both lists

to check that the input was correct and then formed the proper ordered

pairs with one element from each list.

Another serious objection to cfg is stated by Chomsky [3]:

Immediate constituent analysis has been
sharply and, I think, correctly criticized as, in
general, imposing too much structure on senten:es,

The most frequently cited examples as evidence for this claim are

constructions with an unbounded number of immediate constituents. It

is impossible for a cfg to handle these constructions correctly without

an infinite number of rules of the form:

X <- A
X <- A A
X <- A A A .

In order to handle these constructions in a finite grammar, rules are

written of the form:

X <- A
X <- A X

which put the elements at the input at different levels of the parse

tree rather than all on the same thereby imposing a structure

which was not in the original input, The __:ninon example of this for

natural languages is a string of adjectives: Here, again, the problem

is solved by the semantic functions, This sort of string of adjectives

will be a string of adjectives representing sets and they should be

intersected, for example, 'the even prime numbers'. The intersection

43

function will appear only once with the arguments passed up to it as

they are parsed,

ADP <- ADJ
ADP <- STRINGADJ ADJ
STRINGADJ <- ADJ
STRINGADJ <- STRINGADJ ADJ

;I;

(IER ;1; ;2;)
;1;

;1; ;2;

[Note: IER is a special intersection function which
uses heuristics to perform the intersections.]

11.3 Restructuring

The most complex semantic functions are those associated with

restructuring. Woods [28] describes the contrast between the ordinary

control structure associated with cfg and the structure in his system.

In ordinary context-free recognition, the

structural descriptions are more or less direct
representations of the flow of control of the parse
as it analyzes the sentence, The structural
descriptions assigned by the structure building
rules of an augmented transition network . . are
comparatively independent of the flow of control of
the algorithm. This is not to say that they are
not determined by the flow of control of the parse,
for this they surely are; rather we mean to point

out that they are not isomorphic to the flow of

control as in the usual context-free recognition
algorithms.

Our approach differs from Woods' but the purpose is the same.

The order of the content words will be roughly the same in the semantic

function as in the original input reflecting the order in which they

were parsed, but for those sentences requiring restructuring the

primitive semantic functions used will provide the evaluator with a

44

control structure for dealing with the arguments which reflects the

deep structure semantics rather than the surface parse. The need for

this sort of semantic function was first discovered when dealing with

the following examples:

EX1: Which is a factor of 4: 2 or 8?
EX2: Which has a factor of 4: 2 or 8?

answer: 2

answer: 8

The words are identical except for the verb yet the evaluation

procedures are quite different. In EX1 FACTOR is applied to 4 while in

EX2 it should be applied instead to both 2 and 8. The problem is to

block the application of FACTOR to 4 in EX2. Our initial idea was to

add a semantic function when the verb was parsed which would alert the

evaluator to change the order of the arguments for the remaining part

of the semantic function. There are at least three major drawbacks to

this approach. First it has no flexibility and would require a large

amount of coding for all the possible noun phrases and hence semantic

functions that might fill the remaining slots in the sentence. Second,

it would destroy the straightforward character of the semantic

construction since portions of the construction would not be what they

appeared to be. Third and most important it would destroy the

recursive inside-out nature of the evaluator. The alternative that we

have chosen is to use separate noun phrase rules and hence separate

semantic functions to parse the noun phrase 'factor of 4' in the two

examples. This adds to the size of the grammar but does reflect the

difference in meaning of the noun phrase in the two examples. We

therefore have two sorts of NP rules in our grammar: the regular NP's

and a type that we call IINP's. We expect that the use of the HNP's

45

will be wider than merely in connection with the verb 'have' (for

example with relative possessive pronouns). The rule that parses EX2

is

Q <- INTER /HAVE/ HAVENP PUNCHOICE CHOICELIST

[Note: PUNCHOICE allows a varizty of punctuation
marks.]

There are several types of HNP's, one of which is HAVENP. The

semantic functions for some of them create sets and for others

functions. In this case a set will be created which contains all the

numbers that have 4 as a factor, then the singleton sets containing 2

and 8 respectively can be checked to see if they are subsets of this

set.

This approach appears to be compatible with a comment made

about 'have' by Winograd [26]:

The interesting thing about "have" is that it
is not used to indicate a few different
relationships, but is a place-marker used to create
relationships dependent on the semantic types of
the objects involved.

The simplest kind of HNP is called FCNHNP:

(44,5) Q1 <- INTER FCNHNP AUXIL NP /HAVE/
(APP ;2; ;4;)

EX3: What factors does 12 have?
EX4: Which even factors that are less than 6 does 12 have?

The rules that parse FCNHNP's are:

(123,1) FCNHNP <- FCN ;1;

(123,2) FCNHNP <- ADP FCN (FCNMK ;2; ;1;)

(123,3) FCNHNP <- FCN RESTRICT (FCNMK ;1; ;2;)

(123,4) FCNHNP <- ADP FCN RESTRICT (FCNMK ;2; (I ;1; ;3;)) .

46

In the simplest case 1!ke EX3 where there is only the name of a

function, nothing unusual needs to be done. Rule (44,5) applies the

FACTOR function to its argument which is 12. EX4 is more complicated.

Through the semantic function FCNMK, a new function is created at

runtime which can be applied to 12 by Rule (44,5). FCNMK takes two

arguments. First the name of the function, i.e., FACTOR and then a set

representing the various restrictions given by the adjective modifiers

and the other restrictive clauses (RESTRICT) which can be relative

clauses, prepositional phrases or arithmetic relations. Each of these

restrictions is a set so they can all be intersected into one set to

fill the second argument slot for FCNMK. To standardize the notation

in this and the following examples, I will give the format for FCNMK as

(FCNMK f s)

meaning it has two arguments the first f a function and the second s a

set. From these two arguments it creates a new function. In the case

of EX4 it will create the function which when applied to a number

returns all its factors that are both even and less than 6.

There are four types of HAVENP's which create sets. The first

type contains an existential quantifier either trop licitly or

explicitly. Examples are:

EX5: Does 6 have any odd factors that are not divisible by 3?
EX6: Does 5 have an even factor?

The examples studied indicate that the indefinite article in these

contexts should be treated as an existential quantifier. The semantic

function with its arguments is

(EXTHNP f s) .

47

The first argument is a function which will be parsed by

FCNHNP, discussed above, and therefore is either a function in the data

base or a new function to be created at runtime by FCNMK which

incorporates the restrictions on the function, for example, in EX6 the

function will be the EVENFACTOR function, The second argument is a set

and in this particular case it will always be by default the universal

set. The new set created by EXTHNP is

[x I f(x) INTERSECTION s is nonempty)

which is logically equivalent to

(x (EXISTS y in f(x)) (y in s))

Note that intersecting a given set with the universal set has no

effect. The second argument to EXTHNP is used in cases where there is

an exception given, for example

EX7: Does 12 have any odd factors other than 3?

Here the first argument to EXTHNP is again the function, perhaps one

created by FCNMK, and the second argument is a set which is the

complement of the set given in the exception clause. We do not

consider 1 to be a factor of any number since factor was the first

function we programmed and there are not as many interesting questions

that can be asked if 1 is considered a factor of every number.

Therefore in EX7, f is the ODDFACTOR function and thus f(12)=(3) which

intersected with the complement of (3) equals the empty set. Therefore

12 does not belong to the set created by EXTHNP.

48

The universal quantifiers used are 'all' and 'only', as in

EX8: Does 9 have all odd factors?
EX9: Does 12 have only even factors except for 3?

The function UNVHNP is more complicated than EXTHNP because FCNMK

cannot be used. FCNMK makes new functions by incorporating the

adjective and other restrictions into the function. With the universal

quantifier this cannot be done. For example, in EX8 we do not want to

know if 9 has any odd factors, instead we want to first find the

factors of 9 and then make sure that all of them are odd. This adds to

the grammar because all of the rules given for FCNHNP above which parse

the various kinds of modifiers must be duplicated here. The format for

UNVHNP is

(UNVHNP f Sr)

where f is a function in the data base and Sr is the set of

restrictions, UNVHNP creates the set

(x f(x) is a subset of Sr)

A separate semantic function is used for universal quantifiers where an

exception set is given as in EX9.

(UNVHNPXCT f Sr Sx) .

It has 3 arguments, a function in the data base, the set of

restrictions, and the exception set, it creates:

{x I (f(x) - Sx) is a subset of Sr)

In EX9, f(12)=(2,3,4,6,12) and the set difference of this with (3) is

(2,4,6,12), which is a subset of the set of even numberi...

49

The third type of HAVENP's use a numerical determiner. For

example

EX10: Does 12 have 2 odd factors?

uses the semantic function

(EXPHNP <number> f)

which creates the set

(x I CARDINALITY(f(x)) = <number>

Here f may again be a function created by FCNMK.

The final type of HAVEN? are called ANSHNP because the desired

result of the application of the function is included in the HNP, for

example

EX11: Does a 2 inch square have an area of 4 square inches?
EX12: Does 4 have 2 as a factor?
EX13: Does 1/2 have the denominator 2?

EXTHNP which was discussed above in the section on existential

quantifiers is used also for the ANSHNP. The function f is handled by

FCNHNP using FCNMK and the set s is the desired result given. The set

created is again

fx 1 f(x) INTERSECTION s is not empty)

In EX12, f(4)=(2) and (2) INTERSECTION (2) is not empty, so the answer

to the question is TRUE.

50

Chapter III

CONSTRUCT and the Grammar

III.1 CONSTRUCT

CONSTRUCT is the master program for the question-answering

system. It is written in SAIL and provides the interface between the

natural language processing component and the evaluator, It also

contains the SCANNER and handles the actual parsing, The grammar is

read in as a file and compiled before it is run for greater efficiency.

When the parse is finished, the semantic construction is in abbreviated

notation. It is then prepared for the evaluator by a macro expander,

In addition to its function of running the question-answerer,

CONSTRUCT also provides interaction with the user at runtime. The user

has an option of several modes of operation. The basic choice is

between file or teletype input and output. It is also possible to run

without either the TRANSL, the dictionary or the evaluator. This might

be useful for testing whether a list of lexical forms will parse,

however, basically it is designed for the work that CONSTRUCT does with

other forms of grammatical analysis rather than for the question-

answerer. CONSTRUCT is a versatile program which is part of a package

of programs for natural language processing, written by R. Smith, that

have served a number of users for a variety of purposes.

51

Another useful option is the output of a cleaned-up version of

the grammar file, With several people working on the project, the

grammar file often becomes overloaded with comments and notes and the

rules out of any intelligible order as additions and deletions are

made. CONSTRUCT will print out the grammar without comments and with

the rules grouped according to the left-hand-side symbol. It also

automatically provides a numbered label for each rule;.

While the program is running, CONSTRUC1 pro,!ides for editing of

the typed input in case of typographical errors. The experienced user

can also go into DDT and change storage and other parameters and then

return. The TRANSL file can be replaced with a different version. A

word can be added to or deleted from the dictionary or given a new

category; and if the change is to be permanent, the program can be

requested to write the new version of the dictionary on the file

storage device so that it will riot be lost when the program is exited

from.

Other features of the program are designed to aid in debugging

the grammar, The start symbol can be changed so that various phrases

can be tested, A printout of a group of rtes can be requested. The

printout of a particular derivation can be aborted and the next

derivation begun or control can be returned immediately to the user,

The prevfnus input sentence can be redone by a single character command

rather than retyping the sentence, This is useful on a display

terminal where there is no paper printout ro refer back to

52

Often while running the question-answerer, interesting features

are discovered about the way the system handles certain questions. If

a particular derivation is noteworthy for some reason, CONSTRUCT can be

requested to send the question to a file of the user's choice. In this

way, separate files can be maintained for questions which are good

examples of the question-answering system at work, questions which

parse correctly but are evaluated incorrectly, and questions which fail

to even parse. The latter files can be used for diagnostic purposes

and the former to demonstrate the system to visitors.

111.2 The Scanner and the Dictionary

The scanner used by CONSTRUCT is similar to the scanners found

in compilers. It preprocesses the input before passing it to the

parser in the form of a string of lexical categories. The punctuation

and arithmetic signs in the input are passed on untouched. A table of

break characters is used to identify the word boundaries. Numbers are

assigned their lexical category, either INTEGER or REAL, directly by

the scanner. The lexical categories for other words are looked up in

the dictionary. If a word has multiple categories in the dictionary,

all the alternatives are entered in the lexical representation for the

string. For example

2 is a prime.

will be represented as

INTEGER LINK /A/&VAR ADJ &N

53

[Note: VAR is the category for variables and /A/ for

the indefinite article.]

There are currently over 300 words in the dictionary and only

30 have multiple categories. of these, 11 have been satisfactori0

worked out in the grammar and cause no real problems. They include:

1) 5 ADJ&N like 'real' and 'prime';

2) 3 variables:

a) a --- VAR and indefinite
article;

h) x --- VAR and /BY/ as in '2x4

inch rectangle';

c) n --- VAR and notation for
cardinality as in 'n (a,b,c)=3';

3) 'Which' as both an interrogative and a relative
pronoun;

4) 'Square' as GEOFIGURE as in 'a 2 inch square'
and as /OPER/ as in '2 square feet':

5) 'May' as either the name of the month or a
modal verb (note: some terminals cannot distinguish
between upper and lower case) .

The other 19 are in areas of the grammar that are unfinished.

Six of the words with multiple categories are verbs. nur vocabulary

included too few verbs to do extensive categorization on the basis of

the underlying semantics. These categories are therefore somewhat

makeshift, but cause no problems. Two the words are 'intersection'

and 'union' which nave separate categories for the two possibilities:

1) the function name with a list of arguments as in 'the union of

(a) and Ibl' or 2) the function name in infix notation as in ital UNION

(bP. Three of the words (and there are probably many more) are 'day',

54

'week', and 'month'. These examples were discussed in Section II.1.

They can apparently be either N's or FCN's, but more work may show that

creating a new single category would be a better approach. No rules

have been developed in the grammar yet for them. The remaining eight

multiple category words are all some variation of written out numbers.

We have chosen eight of the more common ones to put in the dictionary

for the purpose of testing the grammar, Algorithms exist for easy

conversion of written numbers and this conversion should properly be

performed as part of the scanner. The difficulty lies in the ambiguity

of certain forms, For example, 'one' can be used in two ways:

EX1: There is only one even prime number.
EX2: 231 = 2 hundreds 3 tens and 1 one.

Similarly 'fourth' has two uses:

EX3: The fourth largest factor of 12 is 3.
EX4: 1 fourth = 2 eighths.

It is interesting to note that in both EX2 and EX4 the problem only

arises in the singular and for the ORDADJ's it only arises beginning

with the third, i.e., first, second, third vs. .,., half, third.

Informal questioning of foreign speakers indicates that this is not a

problem in every language.

The vast majority of words in the dictionary, however, have

only a single lexical category. The multiple categories caused a large

amount of grammatical ambiguity with early versions of the grammar. As

the precision of the grammar has increased these have virtually

55

disappeared. The only -remaining ambiguity is far the multiple category

AD&N, for example,

EX5: La 2 prime?
EX6: Is 2 a prime?
EX7: Are 2 and 3 prime?
EX8: Are 2 and 3 primes?

EX6 with the determiner will have only a single parse, but the other

three examples will parse 'prime' as both a noun and an adjective.

There is no ambiguity for the native speaker because of the verb cense

and the determiner used with the singular to make it agree with the

verb and the 's' ending used with the plural for agreement. Our system

uses only the singular form of nouns and verbs (the standardization is

done by the TRANSL) and hence has no facility for checking agreement.

The mathematical sub j ect matter has no semantic need for tenses. The

grammar would he more precise if they were included, but the processing

time would be increased out of proportion cc the advantages gained.

Note that the semantic construction will be the same for both parses in

each of the abo-Je examples, therefoe, the ambiguity is no problem.

The use of tenses and agreement in a grammar supplies it with the power

to convey certain features of meaning. These features of meaning are

not present in elementary mathematics which might be called

Itenseless'. The features remain in the grammar but their potential

power is not actualized for the semantics, therefore, we have chosen to

ignore them thereby losing some of the ability to discriminate between

grammatical forms that have the same meaning. Note that this also

means that the input grammar cannot distinguish between csrrect syntax

56

and certain forms of incorrect syntax. For this reason, tenses and

agreement will need to be included in the output grammar so that it

will produce only grammatically correct sentences.

111.3 The TRANSL File

The scanner checks to see if any word or group of words in the

input is in the TRANSL file before it looks up the lexical categories

of the words in the dictionary. The TRANSL contains strings which are

to be substituted for and the substitution which may be the empty

string. There are five basic uses of the TRANSL in the current version

of the system. 1) All plural forms are TRANSL'd to the singular. 2)

All abbreviations are TRANSL'd to the full word singular form. 3)

Synonyms are TRANSL'd to the most commonly used one of the group. 4)

Two or more words which always occur together, one or more of which may

have no meaning alone in the particular subject matter, are TRANSL'd to

a single word representation, for example, 'wholenumber'. And 5) noise

words are eliminated. Some of the noise words are in the nature of

interjections which have little meaning in any subject matter. Others

are words like 'also' and 'both' which in ordinary conversation add

precision and shades of meaning but are unneeded in mathematics which

already uses a precise rigid approach to the determination of meaning.

It is for this reason that so few adverbs are used at all in

mathematical language.

57

EX;: Find the even number which is a factor of 4 and 6.
EX2: Find the even number which is a factor of both 4 and 6.
EX3: Find the even number which is a factor of 4 and also

a factor of 6.

The use of 'both' and 'also' in these examples adds nothing to the

meaning so they are eliminated at the level of the TRANSL.

Some analogies can be made between the function of our TRANSL

file and certain features of other natural language processing systems,

in particular, pattern -.e-cognition systems, hobrow [2] distinguishes

between 'structural' transformations and 'definitional'

transformations. He gives as examples of definitional transformations,

the substitution of 'twice' for '2 times' and 'one half of for '.5

times'. In our system, the TRANSL handles these sorts of 'definitional'

transformations. The TRANSL also performs another function in the same

way as a system based on the pattern recognition technique. Colby and

Enea [41 give the example:

Could you tell me your name?

The lite?:ai analysis -s obviousiy Rather, in polite

conversation, certain atandard phra:1-ez add no meaning are used to

introduce questions, Colby and Enea use he following rules to deal

with these phrases:

RULE 3 OF SENTENCE
<QUESTION-INTRODUCER:,: rJ <NOUN-PHRASE>:N

RULES OF QUESTION-INTRODUCER
COULD YOU TELL ME
WOULD YOU TELL ME
PLEASE TELL ME

Our TRANSL inciudeo the two strings 'do you knw' and 'can you' which

are very similar' to chess exampLi3, is interesting to note that

58

their system which is designed for the pattern recognition technique

requires as many rules to deal with the question introducer as ours

does. We need one line in the TRANSL for each rf the phrases as they

need one rule for each; and we also need one grammatical rule for each

sufficiently different construction of the question following the

phrase. We have the two rules:

RULE1 Q /DOYOUKNOW/ NP
EX1: Do you know the sum of 2 and 4?

RULE2 POYOUKNOW/ INTER. NP LINK
EX2: Do you know what the factors of 12 are?

RULE1 is analogous to their rule and they would need to add RULE2

before they could handle EX2.

111.4 The Grammar

The grammar is a context-free grammar. Winograd [26] in

discussing augmented transition networks says

The advantages lie in th-..? ways in which these
augmented networks are close to the actual
operations of language, an(I a natural. and

understandable representation for grammars.

This is also the goal of our grammar and associated semantic functions.

By writing the rules so that appropriatc semantic functions can be

assigned to them, the rules themselves are more natural and closer to

the "actual operations of languaf-e. trees are considerably flatter

than the trees for parses by more conventional context-free grammars

59

used for natural language processing. The start symbol S parses an

input sentence according to its type: Q for questions, D for

declaratives, C for commands, and F for arithmetic formulas. At the

top level for each of these categories, the sentence will be parsed by

a rule that shows its basic structure in considerably more detail than

the usual S 4-- NP VP. Because the grammar needs to 1) determine the

correct semantic function and 2) locate all its arguments, there will

be no categories in the grammar like VP which are complete 'black

boxes'.

Montague [11] argues against the approach of attacking syntax

first and then considering semantics.

Such a program has almost no prospect of
success. There will often be many ways of

syntactically generating a given set of sentences,
but only a few of them will have semantic
relevance; and these will sometimes be less simple,
and hence less superficially appealing, than
certain of the semantically uninteresting modes of
generation, Thus the construction of syntax and
semantics must proceed hand in hand.

A word of caution is also needed for those who would attack

semantics first. The guidelines for semantic interpretation are

established by the syntax. If an attempt is made to analyze meaning in

isolation from the syntax, there is also almost no prospect for

success. It is possible to write a jumbled program that will handle

bits and pieces of the input that it -p.:ks our., and even do fairly well

on the limited set of sentence types for which it was designed, but no

60

organized, flexible, general semantic approach can be constructed which

is not closely guided by the syntax.

Montague says that the rules with semantic relevance may be

"less superficially appealing. Our experience has shown that the

appeal of semantically poor rules is very superficial indeed. For

small portions of the grammar, more efficient and appealing rules can

certainly he written, however, the only way to keep the various areas

of the grammar from causing grammatical ambiguities and other

difficulties when they work together is by considering the semantics at

every step, This is the structure that grammar has. If an attempt is

made to parse natural language with a grammar that is appealing on some

other ground, it simply cannot be made to fit the language.

Therefore, our primary consideration in writing the rules of

the grammar is to facilitate the writing of semantic functions for the

rules. The next consideration is to write rules which minimize

grammatical ambiguity. Given that these two conditions are satisfied,

other factors such as the number of rules required to parse a

particular construction can be considered.

At this point, an illustrative example of this grammar writing

procedure will be helpful. Consider the following questions:

A:

B1:

Is 2 odd?
Is 2 an even number?
Is 2 greater than 1?
Is 2 between 1 and 12?

Which factors of 12 are odd?
Which factors of 12 are even numbers?
Which factors of 12 are greater than 1?
Which factors of 12 are between 1 and 12?

61

B2: Which factors of 12 are not odd?
Which factors of 12 are not even numbers?
Which factors of 12 are not between 1 and 12?
Which factors of 12 are not between 1 and 12?

First we can notice that the adjective 'odd', the noun phrase

'an even number', the arithmetic relation 'greater than 1', and the

prepositional phrase 'between 1 and 12' each have the same semantic

role in the A-group questions and also have the same role as each other

in the B-groups. The primary semantic function for the A-group is

subset and the primary semantic function for the B1 -group is

intersection. So we can write the following rules for use in these two

contexts as well as many other contexts:

SUBST <- NP
SUBST <- ADJ
SUBST <- ARITHRELS
SUBST <- PREPHRASE

[Note: Only a few of the prepositions fall under this
particular category of prepositional phrases.]

Next, we can consider how to handle the occurrence of 'not' in

the B2-group. There are four plausible ways of writing these rules if

only the syntax is considered.

(1) Q <- INTER NP LINK SUBST
Q <- INTER NP LINK /NOT/ SUBST

(2) Q <- INTER NP LINKNOT SUBST
LINKNOT <- LINK
LINKNOT <- LINK /NOT/

(3) Q <- INTER NP LINK SUBST
ADP <- /NOT/ ADP
NP <- /NOT/ NP
ARITHRELS <- /NOT/ ARITHRELS
PREPHRASE <- /NOT/ PREPHRASE

(4) Q <- INTER NP LINK SUBST
SUBST <- /NOT/ SUBST

62

The last proposed set of rules is the one we have chosen. The

second would be the worst choice because no semantics could be written

for the rules. Failure to support a semantic analysis is the worst

problem that a grammatical rule can have. The 'not' in the second

alternative is simply buried too deeply in the grammar. It cannot be

semantically attached to the SUBST or to the relationship between the

NP and the SUBST.

The first set of rules could form the basis for a workable

semantics for 'not' although the grammar would need to be longer

since each rule containing a SUBST would need to be duplicated with

/NOT/ inserted before SUBST and a new semantic function written. For

example here the semantics for the positive case would be intersection

and the semantics for the negative case could be either intersection

with the complement or set difference. Also a complete set of listing

rules like

Q <- INTER NP LINK /NOT/ SUBST /AND/ /NOT/ SUBST

would be needed at each top-level position. Using the fourth

alternative the listing (and choice) rules need to be given only once

at the SUBST - level.

The third alternative has the same end result as the preferred

fourth alternative, but it can be rejected on the grounds that it is

longer. Also it would lead to syntactic ambiguity in the case of

SUBST's which are noun phrases containing an adjective. For example

'not even numbers' could be parsed as either:

63

SUBST SUBST

NP NP

/ /

NOT NP ADP N

/ /

ADP N NOT ADP

All of the groups of rules in the grammar will be given and

briefly described in the next chapter, In the remainder of this

section, I will discuss the general problem of ambiguity. There are a

variety of types of ambiguity. There are also a variety of approaches

available for disambiguation, No single approach can handle all types

of ambiguity. Our intention is to disambiguate by combining several

approaches in a natural way so that the disambiguation for any given

sentence will correspond as closely as possible to the way a native

speaker would perform the disambiguation. Because our grammar cannot

hope to be as complex or the heuristics in the evaluator as broad in

scope as a person's, certain of the disambiguation techniques which are

of minor importance for a person will carry a disproportionate share of

the workload in our system. Two of these techniques which are probably

not as often used by native speakers may unfortunately play a large

role in our system. The first is the case where a person is so unsure

of the intended meaning that he or she must ask for clarification. The

second case is where the person is fairly sure of the intended meaning

but does recognize that there is another possible interpretation which

has some plausibilty. In this case, the person may ask the speaker if

64

the more probable interpretation is in fact the intended meaning or ,

especially in the case of written speech, may adopt the interpretation

with the highest probability subject to revision if further input shows

it to be the wrong assumption.

I will distinguish three types of ambiguity and call them

lexical, grammatical, and semantic ambiguity. At the surface level

before any syntactic or semantic analysis has been done, there may be a

fair amount of lexical ambiguity, i.e,, words with multiple lexical

categories. The vast majority of these cases are disambiguated on the

basis that only one will parse. If there is more than one parse,

there will still be no problem, as in the case of ADJ&N, if both parses

yield the same semantic construction, Even if there is no lexical

ambiguity, an input may have more than one syntactic parse. If the

derivations all produce the same semantic construction, I will call it

grammatical ambiguity, and if different semantic constructions are

produced, I will call it semantic ambiguity. It is also possible to

have semantic ambiguity even if there is only one parse as in Katz'

'colorful ball' example. This ambiguity cannot be detected by the

natural language processing component of the system. It will be

detected and resolved by the evaluator on the basis of context and

world knowledge. Therefore I will not discuss this form of ambiguity

in this section, The ambiguity we are concerned with here is

ambiguity in which the meanings of words are not in dispute only the

way of combining them. As grammatical ambiguity is naturally resolved

65

by the semantics in the case where only one semantic construction is

produced, similarly, semantical ambiguity is naturally resolved by the

evaluator when either the evaluation is the same or only one of the

semantic constructions can be successfully evaluated. These sorts of

disambiguation, the grammar settling lexical ambiguities, the semantics

settling grammatical ambiguities, and the evaluator settling semantic

ambiguities, are a natural by-product of the structure of the system.

The ambiguities which remain require additional measures. Sometimes a

sentence will have two or more parses with different semantic

constructions and the output from the evaluator is also different for

each. The addition of context checking and world knowledge to the

evaluator will cut down the number of these remaining ambiguities by

discarding more possible interpretations as unacceptable at the level

of evaluation. Also certain heuristics can be added which are based on

insights about the sorts of questions that people are likely or not

likely to ask. Failing any cf these measures: 1) the user can be asked

what was meant, 2) the interpretation which has the grammatical

structure with the highest probability based on a probabilistic fit of

the grammar with a corpus of sample questions can be tentatively

chosen, or 3) the user can be presented with the most probable

interpretation selected in this way and asked if it is correct, Work

by R. Smith [21] with probabilistic grammars shows that in many cases

they can be used very successfully for disambiguation, Through the use

of complicated analysis and statistical programs which will not be

66

discussed here, probabilities can be assigned to each rule on the basis

of its group membership determined by left-hand-side symbol (the

probabilities of the rules in each group summing to 1) so that the

probability assigned to each derivation when there are multiple

derivations of a grammatical construction will accurately reflect the

percentage of times that it was the correct derivation on semantical

grounds in a large sample set of sentences containing that grammatical

construction. Thus by analyzing large numbers of sample questions, we

can know for a given ambiguous sentence type which grammatical parse is

more frequently the correct one. The CONSTRUCT program is prepared to

handle the addition of probabilities to the grammar. The use of

probabilities has an analogue in human processing. A person will first

understand a sentence according to commonly used grammatical

constructions and then if there is a problem reevaluate it with more

uncommon grammatical rules. I will conclude this section with an

example of the handling of the ambiguity problem for lists of units.

The rules for lists of UNITss need to be written carefully to

avoid unnecessary grammatical ambiguities and detect genuine semantic

ambiguities. Consider the followinp, lists of units:

EX1: 5 yds 3 ft 2 in
EX2: 2 lb 3 oz, 4 lb, and 5 oz
EX3: 2 yds and 2 ft

Lists with no commas, such as EX1. are clearly intended to be

compound units rather than a list of single units. These are parsed by

a grammatical category called JOINUNITS with the semantic function

67

UNITJOIN. The evaluation procedure for UNITJOIN adds the units together

and forms a single new unit for the evaluator to work with. EX2 is a

list of three elements (one of which is a compound unit) and no further

joining should be done among the three top-level elements. EX3 can in

some contexts be genuinely ambiguous. There is no method in our system

for attaching two possible semantic functions to one rule of the

grammar. It is also not either possible or desirable for one semantic

function to be evaluated in two completely different ways. So the

solution chosen here was to write syntactic rules which would be known

to generate two-way ambiguities in certain cases with each of the

ambiguous derivations assigned a different semantic function. Consider

the command

Convert 2 yds and 2 ft to inches.

The answer could be either

(CMD (CHL 72 INCHES 24 INCHES))
or

(CMD 96 INCHES) .

The first answer results from parsing by LISTOFEXP which uses the CHL

semantic function and thus gives an answer for each of the elements on

the list. The second answer results from parsing by SUMUNITS which

like JOINUNITS uses the UNITJOIN semantic function and thus adds the

units together before it performs the conversion. Sentences like these

will be derived in both ways thus reflecting the genuine ambiguity.

EX2 will be parsed only by LISTOFEXP because SUMUNITS does not allow a

joined unit as an element since the presence of a compound unit on a

68

list blocks further joining. However, sometimes there are other clues

in the input which allow the native speaker to disambiguate it.

Consider the following commands:

EX4: Convert 5 yds, 3 ft, and 2 in to inches!
EX5: Convert 5 yds, 3 ft, and 4 ft to inches!

These commands are easily understood by the native speaker.

The derivation using SUMUNITS is the correct one for EX4 and the

derivation using LISTOFEXP is correct for EX5. In this case,

heuristics should be added so that the evaluator will reject the

incorrect derivations and eliminate them at the evaluation level rather

than trying to eliminate them at the syntactic level. For example, it

would be an error when the evaluator was asked to convert 2 inches to

inches in EX4, and an error when asked to join 3 feet and 4 feet into a

compound unit in EX5.

There is one other possible source of unacceptable ambiguity.

Consider:

EX6:
EX7:

A line 2 yds, 1 ft, and 10 in long
A triangle with sides 2 yds, 1 ft, and 10 in

The units in EX6 should be joined and those in EX7 should not. The

evaluator will reject the incorrect parses on the basis of the number

of arguments that it expects for working with lines and triangles. It

might be possible to put these argument slots into the grammar

explicitly, but it would lengthen the grammar too much to be practical.

69

Chapter IV

The Rules of the Grammar and their Semantic Functions

IV.1 Introduction

The grammar contains 642 rules. As I discuss the rules, I will

note areas where additions are planned, Some groups of rules are known

to be incorrect and I will point these out and indicate what remedies

are needed. Other parts of the grammar do not yet have associated

semantic functions so their correctness cannot be tested. A rule of the

grammar can be incorrect in either of two ways. First it can fail to

parse the constructions it was intended to parse or second it can parse

in an unnatural way so that no semantic function can be written for the

rule. It has generally been true that writing the semantics brings to

light problems with the grammar -- some of them trivial problems but

others have been major, unexpected, and in general very revealing about

the nature of the language that we are dealing with, One striking case

where this happened involved sentences containing the verb 'have'. [See

Section II.3].

In the next sections I will go through the grammar one group of

rules at a time and give a short description and explanation of the

rules in the group, including examples and any information about their

evolution through the various revisions of the grammar that might be of

interest.

70

The rules are labelled by an ordered pair of numbers enclosed

in parentheses. Each rule with the same left-hand-side (lhs) has the

same first number in the label and the various rules in the group

receive consecutive second numbers. This structure was created to

handle probabilistic grammars where groups with the same lhs need to be

distinguished. If and when we decide to implement probabilities the

CONSTRUCT program is prepared to handle them.

The rules of the grammar are given in standard context-free

rule format with the lhs and rhs separated by 1<-'. Each rule is

followed by a tab and then its associated semantic function. Numbers

enclosed in semi-colons in the semantic function refer to the position

of elements in the rhs of the syntactic rule. Numbers without semi-

colons are passed directly to the evaluation program and are usually

default values for argument slots. Perhaps the best way to show how

the semantic functions work is by a simple example which uses only the

following rules:

(1,2)

(2,1)

(2,2)

(3,4)

(3,2)

(4,2)

(7,1)

(13,1)

(14,1)

(15,2)

(16,1)

S <- F
F <- F2
F <- LISTOFF
LISTOFF <- LISTOFF , /AND/ F2
LISTOFF <- F2 , F2
F2 <- EXPP ARITHREL EXPP
EXPP <- EXP1
EXP1 <- EXPT
EXPT <- EXPF
EXPF <- TERM
TERM <- INTEGER

(FML ;1;)
;1;

(ANDER (LST
;1; ;4;

;1; ;3;

(S ;1; (APP
(LST ;1;)
;1;

;1;
;1;

;1;.

;1;))

(FCN ;2;) ;3;))

71

To show how the semantic construction which is to be passed to

the evaluation program is built up, I will go step by step through the

syntactic parse and show what information is added to the semantic

construction at each step, I will use two examples:

EX1: 2<3

EX2: 2<3, 3<4, and 4<5

For this purpose I will abandon strict left to right processing and

instead process the integers simultaneously by multiple use of the

rules where possible. When an argument in the semantic construction is

not yet specified I will represent it by [], And when a terminal

symbol in the grammar is reached and there is a corresponding [] in

the semantic construction, I will put the symbol in the brackets, for

example, [integer]. Before this is passed to the evaluation program,

the actual integer in the input sentence will he substituted into the

formula by a macro expander, Terminal syntactic categories like /AND/

which serve to give structure to the input sentence do not explicitly

appear in the semantic representation, Instead the appropriate basic

semantic function,

construction.

EX1: 2<3

in this case ANDER, is added to the semantic

result of scanner processing:
INTEGER ARITHREL INTEGER

STEP1: (1,2) S <- F

STEP2: (2,1) <- F2

STEP3: (4,2) <- EXPP ARITHREL EXPP
STEP4: (7,1) <- EXP1 ARITHREL EXP1

STEPS: (13,1) <- EXPT ARITHREL EXPT
STEP6: (14,1) <- EXPF ARITHREL EXPF
STEP7: (15,2) <- TERM ARITHREL TERM
STEP8: (16,1) <- INTEGER ARITHREL INTEGER

72

STEP1 tells us that we have an arithmetic formula (FML) and

need to compute its truth value. The semantic construction at the end

of STEP1 is:

(FML[j) .

STEP2 is the identity function, The semantic construction

remains unchanged.

STEP3 is really the heart of the parse both syntactically and

semantically. For each construction parsed there will be a step of

this sort where each meaningful component will appear in as fully

specified a form as necessary so that the correct semantic function can

be assigned. Here it is the subset relation (S) which is important.

{2} is a subset of the set of numbers that are less than 3. It would

not actually be necessary at this level to know what the argument to

the arithmetic relation is. That is, we could have written the rules:

F2 <- EXP ARITHRELS (S ;1; ;2;)

ARITHRELS <- ARITHREL EXP (APP (FCN ;10 ;2;)

rather than

F2 <- EXP ARITHREL EXP (S ;1; (APP (FCN ;2;) ;3;)).

[Note: FCN specifies that the argument given is a
function name. For function names which are nouns, the
FCN will be added to the semantic construction at the
NP-level,)

The important point is that SUBSET is the basic semantic function for

the construction and at this level it needs to locate both its

arguments. It is unimportant how fully specified the arguments

themselves are at this level; that decision can be made in terms of

convenience. The semantic construction is now:

73

(FML (S[] (APP (FCN [ARITHREL])[]))).

[Note: As explained above, the actual arithmetic
function which in this case is the LESSTHAN function
will be inserted by the macro-expander.]

STEP4 adds LST to the integer arguments. Like FCN, the LST

function is used to give the evaluator information about the type of

the argument. The semantic construction is now:

(FML (S (LSTI]) (APP (FCN [ARITHREL]) (LST[])))).

STEPS5-7 are identities. The large number of uses of the

identity function in this parse reflects the simplicity of the input.

For example, in order to parse '2+3 < 3+3', the rule

(13,2) EXP1 <- EXP1 + EXPT (ADDER ;1; ;3;)

would be used instead of

(13,1) EXP1 <- EXPT ;1;

The use of the identity function allows us to drop down through levels

of rules which are not needed for a given input.

STEP8 completes the syntactic parse and the semantic

construction by specifying the two integers. The semantic construction

is

(FML (S (LST [INTEGER]) (APP (FCN [ARITHREL]) (LST [INTEGER])))).

[Note: this step by step analysis is not meant to be
an accurate representation of any actual program
implementation but rather a conceptual aid in

understanding how the semantic functions work.]

EX2: 2<3, 3<4, and 4<5

result of scanner processing:
INTEGER ARITHREL INTEGER , INTEGER ARITHREL INTEGER ,

AND INTEGER ARITHREL INTEGER

74

The only difference between the passe of this example and EX1

is the use of the listing feature. instead of

STEP2: (2,1) <- F2 ;1;

for this example we have:

STET2: (2,2) <- LISTOFF (FML ANDER (LST[])))
STEP2A: (3,4) <- LISTOFF , /AND/ F2 (.AML (ANDER (LST[][])))
STEP2B: (3,2) <- F2 , F2 , /AND/ F2 ;FML (ANDER (LST[][][])))

These rules provide an example of the use of semantic functions

to handle correctly constructions involving unbounded branching of

immediate constituents, The basic semantic function ANDER is inserted

at STEP2 and then STEP2A and STEP2B simply pass the arguments up to it

as they are parsed; thus preserving in the semantic construction the

structure of the original input rather than adopting the artificial

structure of the context-free parse.

One other feature tf the semantic functions needs to be

discussed here, If we have not yet written the semantic function for a

particular rule, it will be marked UNDEFINED, However, some syntactic

rules deliberately do not ha7e semantic functions which is represented

by the slot for the semantic function being blank. Blank semantics on

a rule indicates one of two things, The word or phrase in question may

be noise. Many noise words are elLminated in the scanner phase but

there are words that have meaning in some contexts but are noise in

others. For example, 'of the' in questions like 'Which of the factors

of 12 are odd?' is a noise phrase, So we might writs the rules:

1) Q <- INTER1 NP LINK SUBST
2) INTER1 < ICIER
3) INTER1 <- INTER i0F/ /THEi

75

(I ;2; ;4;)

The semantic slot for rules 2 and 3 is blank. The INTER ('which' or

'what') has been taken into account at the level of rule 1, and if the

phrase 'of the' occurs, it is noise.

However, blank semantics does not always indicate the presence

of noise words. For example, consider the following questions:

How many tens does 50 equal?
How many tens does 50 name?
Does 50 name 5 tens?
Does 50 equal 5 tens?

In these contexts 'equal' and 'name' have the same meaning so we might

write the rules:

1) Q <- /HOWMANY/ EXP AUX EXP VEQUAL
2) Q <- AUX EXP VEQUAL EXP
3) VEQUAL <- =
4) VEQUAL <- /NAME/

Any other verbs which have the same meaning in these contexts can be

added to the category VEQUAL. 'Equal' and 'name' do not have the same

meaning in every context, so we cannot associate them by means of

either the TRANSL or the dictionary. However, the semantics of the

construction is clear at the level of the Q-rules independent of which

of the two verbs is used therefore the semantics for the VEQUAL-rules

can be blank.

IV.2 S-Rules

(1,1) S <- F . (FML ;1;)

(1,2) S <- F (FML ;1;)

(1,3) S <- Q ? (QUS ;1;)

(1,4) S <- C ! (CMD ;1;)

(1,5) S <- D . (DCL ;1;)

(1,6) S <- D (DCL ;1;)

76

These are the highest level rules. Their purpose is to

determine what sort of sentence the input is: an arithmetic formula, a

question, a command or a declarative. The period is optional for

formulas and declaratives. Questions use a question mark and commands

an exclamation point. I believe that the grammar can parse correctly

without final punctuation if necessary for speech recognition. The

semantic functions encode the type of the input sentence.

IV.3 F-Rules

(2,1) F <- F2 ;1;

(2,2) F <- LISTOFF (ANDER (LST ;1;))

(3,1) LISTOFF <- F2 /AND/ F2 ;1; ;3;

(3,2) LISTOFF <- F2 , F2 ;1; ;3;

(3,3) LISTOFF <- LISTOFF , F2 ;1; ;3;

(3,4) LISTOFF <- LISTOFF , /AND/ F2 ;1; ;4;

(3,5) LISTOFF <- LISTOFF /AND/ F2 ;1; ;3;

(4,1) F2 <- EXPP ARITHREL EXPP
ARITHREL EXPP

(4,2) F2 <- EXPP ARITHREL EXPP

(ANDER (LST
(S ;1; APP (FCN ;2;) ;3;))
(S ;3; (APP (FCN ;4;) ;5;)))
(S ;1; (APP (FCN ;2;) ;3;))

The F-rules parse arithmetic formulas like:

2+2=4
2+2=3+14
2<3<4
{a,b} UNION {b,c} = {a,b,c}
1 lb. = 16 oz.
2 tens = 20 ones = 20 .

The rules also parse lists of these formulas. The evaluation program

returns the truth-value. The semantic functions for the F-rules were

discussed in Section IV.1.

77

IV.4 Top-Level EXP-Rules

(6,1) EXP <- EXPCHOICE (CHL ;1;)

(6,2) EXP <- LISTOFEXP (CHL ;1;)

(6,3) EXP < EXPP ;1;

(40,1) EXPCHOICE <- EXPP , EXPP ;1; ;3;

(40,2) EXPCHOICE <- EXPP /OR/ EXPP ;1; ;3;

(40,3) EXPCHOICE <- EXPCHOICE , EXPP ;1; ;3;

(40,4) EXPCHOICE <- EXPCHOICE , /OR/ EXPP ;1; ;4;

(40,5) EXPCHOICE <- EXPCHOICE /OR/ EXPP ;1; ;3;

(12,1) LISTOFEXP <- EXPP /AND/ EXPP ;1; ;3;

(12,2) LISTOFEXP <- EXPP , EXPP ;1; ;3;

(12,3) LISTOFEXP <- LISTOFEXP , EXPP ;1; ;3;

(12,4) LISTOFEXP <- LISTOFEXP , /AND/ EXPP ;1; ;4;

(12,5) LISTOFEXP <- LISTOFEXP /AND/ EXPP ;1; ;3;

LISTs have been a major problem Initially, we believed that

'and' and 'or' should be given the same treatment as in formal logic.

Thus a choicelist (disjunction) would have the value TRUE if the value

for at least one member of the disjunction were TRUE and an ordinary

list (conjunction) would be TRUE only if the values for all its members

were TRUE. It immediately became obvious that this was not workable,

Consider the following questions:

EX1: Is 2 or 3 even?
EX2: Are 2 and 3 even?

Using the standard logical interpretation, the answer to EX1 is TRUE

and the answer to EX2 is FALSE This is clearly unacceptable. Instead

we have created the semantic function CHL (choicelist) which returns a

separate answer for each member of the list, Given this output from

the evaluator, it is a further question to decide exactly what

information should be included in the final answer. Since CHL is

78

assigned at the top -level in Rules (6,1) and (6,2), there is no need

in this case to have Rules (40,1)-(40,5) as an exact duplication of

(12,1)-(12,5). Instead they could be combined in a new category

EXPLIST/CHOICE using the grammatical category AND/OR.

However the use of 'and' does not in every context call for

this type of treatment. The following question:

EX3: Is la} the intersection of to h} and {a c}?

cannot use the CHL semantic function. The list in EX3 is a list of

arguments to the INTERSECTION function which always requires more than

one argument. The lexical category for these functions is 2FCN. The

semantic function used for the list of arguments to a 2FCN is LST.

(87,9) NP4 <- 2FCN /OF/ LST/EXP (APP ;1; ;3;)

(88,2) LST/EXP <- LISTOFEXP (LST ;1;)

Since the arguments to a 2FCN are never listed using 'or', the

LISTOFEXP-rules could not be combined with the EXPCHOICE-rules for this

case.

The rule for ordinary FCN's is

(87,6) NP4 <- FCN /OF/ NP (APP ;1; ;3;)

If the argument is a list as in

EX4: What are the factors of 2, 3, and 4?

Rule (6,2) with the CHL semantic function will be used to further parse

the NP. For EX3, LST will be assigned by rule (88,2), Thus LST or CHL

is assigned at a higher level and then FX3 and EX4 will both use

(12,1)-(12,5) to perform the parse of the actual list. Lists using the

I and U semantic functions will be discussed in Section IV.14.

79

These recursive rules for lists need to be carefully written to

prevent ambiguities. For example, the following rules

1) A <- LISTOFA
2) LISTOFA <- LISTOFA /AND/ A
3) LISTOFA <- A /AND/ A

are unacceptable because by performing the recursion on A itself,

elements of the list can jump back to the top level thereby creating

sublists. Thus

A and A and A

can be parsed in the three following ways:

11

A A

1

LISTOFA LISTOFA LISTOFA

/ 1 \ / I \
/ 1 \

LISTOFA AND A A AND A A AND A
/ 1 \ I

1

A AND A LISTOFA LISTOFA
/ 1 \ / 1 \

A AND A A AND A

For this reason, in the LISTOFEXP and EXPCHOICE rules, the recursion is

on EXPP rather than EXP.

IV.5 Types of EXP's

(7,1) EXPP <- EXP1
(7,2) EXPP <- SETEXP
(7,3) EXPP <- DA.TEXP
(7,4) EXPP <- NTUPLE
(7,5) EXPP <- TIMEXP
(7,6) EXPP <- ARITHEXP

(LST ;1;)
;1;

;1;

;1;

;1;
(LST ;1;)

We have divided noun phrases into tw:: categories. The NP1

category parses the more flexible natral language noun phrases and the

80

EXP-rules parse the phrases which have a predefined format in

mathematical language. Thus all the rules for parsing constructions

peculiar to this subject matter are segregated in one portion of the

grammar which makes the grammar more readable. EXP is the category

which could be eliminated if the subject matter were changed and

arithmetic was not needed. It is also the category which will need the

most work as new topics in elementary mathematics are added to the

scope of the program.

The different types of EXP's will be discussed in the next

sections. Only six categories of EXP's are given in the EXPP rules

listed at the beginning of this section. There are in fact other

equally distinguishable categories which appear in the TERM rules below

rather than here with the EXPP's. One example of such a category is

UNITS (expressions of units of measurement). These categories need to

be TERM's because they can function as terms in arithmetic expressions

like

2 feet ± 4 feet = 2 yards.

IV.6 EXP1 -Rules

(13,1) EXP1 <- EXPT ;1;

(13,2) EXP1 <- EXP1 + EXPT (ADDER ;1; ;3;)

(13,3) EXP1 <- EXP1 EXPT (SUBBER ;1; ;3;)

(14,1) EXPT <- EXPF ;1;

(14,2) EXPT <- EXPT * EXPF (MULTER ;1; ;3;)
(14,3) EXPT <- EXPT / EXPF (DIV ;1; ;3;)

(15,1) EXPF <- (EXP1) ;2;

(15,2) EXPF <- TERM ;1;

(16,1) TERM <- INTEGER ;1;

81

(16,2)

(16,3)

(16,4)

TERM <- REAL
TERM <- RNUMERAL
TERM <- INTEGER INTEGER / INTEGER

;1;

;1;

(MAKEMIXED ;1; ;2; ;4;)

(16,5) TERM <- VAR ;1;

(16,6) TERM <- CARDOF SETEXP (CARDINALITY ;2;)
(16,7) TERM <- NUNITS ;1;

(16,8) TERM <- UNITS ;1;

(16,9) TERM <- /NUMBER/ /PERCENT/ (PERCENT ;1;)

(16,10) TERM <- /NUMBER/ /PERCENT/ /OF/ EXP (PERCENTAGE ;1; ;4;)
(16,12) TERM <- INTEGER /OF/ INTEGER /PART/ (DIV ;1; ;3;)

(16,13) TERM <- INTEGER /OUTOF/ INTEGER (DIV ;1; ;3;)

(17,1) /NUMBER/ <- INTEGER ;1;

(17,2) /NUMBER/ <- REAL ;1;

(17,3) /NUMBER/ <- INTEGER / INTEGER (DIV ;1; ;3;)

(17,4) /NUMBER/ <- INTEGER INTEGER / INTEGER (MAKEMIXED ;1; ;2; ;4;)

These rules are standard rules for parsing arithmetic

expressions. The substance of the rules was taken from [7]. The rules

are designed to reflect the ordinary precedence rules for arithmetic

operators, The category /NUMBER/ is defined for use in rules such as

(16,9) and (16,10) where only single numbers (integers, decimals, mixed

numbers, and fractions) can appear rather than arithmetic expressions

like 2+4,

The scanner recognizes integers and reals but the current

semantic functions ignore this information since no evaluation

procedures have yet been written that are specifically designed for

reals, The evaluation program uses predefined LISP functions whenever

possible. The standard LISP functions for arithmetic work well for

operations on integers, but the evaluator should not use them for

operations on reals. LISP uses floating point for reals thus causing

the answer 3.999... to be given to the question 'What is the sum of 1

82

and 3.0?'. This is one of the areas where the evaluation program

simply has not yet been completed. A procedure needs to be written

which does decimal arithmetic in the same way as an elementary student

rather than the same way as a computer. Note that when the evaluation

program is ready to deal with the information that a number is a real,

it will be given this information through the semantic functions on

rules (16,1), (16,2), (17,1), and (17,2).

Rule (16,4) parses mixed numbers. Mixed numbers can be

identified by the grammar, but unfortunately no way has been

implemented to distinguish fractions from ordinary division. This

problem is created by the limited character set of the teletype, We

have chosen to use '7' for both division and fractions rather than to

designate an arbitrary character for one of these purposes. The

representation of fractions as a division operation requires special

techniques for their handling in the evaluation program. Rule (16,6)

derives the expression for cardinality of sets, for example, n [a b c]

3. Rules (16,7) and (16,8) parse expressions involving percents and

(16,12) parses expressions like '36 of 100 parts'. Of course, EXP1

will derive each of these types of TERM's singly as well as combined by

the arithmetic operators.

IV.7 Set-Expressins and Ntuples

(21,1) SETEXP <- SETEXP /UNION/ SETEXP (U ;1; ;3;)
(21,2) SETEXP <- SETEXP /INTER/ SETEXP (I ;1; ;3;)
(21,3) SETEXP <- SETEXP SETEXP (SD ;1; ;3;)

(21,4) SETEXP <- (NIL
(21,5) SETEXP <- [ELELIST (LST ;2;)
(21,6) SETEXP <- [ELELIST1 (LST ;2;)

83

(21,7)

(21,8)

SETEXP <- (VAR : F)

SETEXP <- (VARA : F)

(ABSTRACT ;2; (;4;))

(ABSTRACT ;2; (;4;))

(22,1) ELELIST <- ELEMENT , ELEMENT ;1; ;3;

(22,2) ELELIST < -- ELELIST , ELEMENT ;1; ;3;

(23,1) ELELIST1 <- ELEMENT ;1;

(23,2) ELELIST1 <- ELELIST1 ELEMENT ;1; ;2;

(24,1) ELEMENT <- PN ;1;

(24,2) ELEMENT <- EXP1 ;1;

(24,3) ELEMENT <- SETEXP ;1;

(11,1) NTUPLE <- < ELELIST > (NTUPLE ;2;)

The evaluation procedures for NTUPLEs and SETEXPs have not been

worked on extensively yet. The rules and semantic functions which

appear here need some revision. For example, precedence rules will be

needed like those for arithmetic operators.

The elements of a set are parsed by ELELIST if they are

separated by commas and ELELIST1 if they are not, To avoid ambiguity,

the singleton set is parsed only by ELELIST1. We have not yet decided

what sorts of objects should he allowed as elements of sets. Clearly

SETEXP's, /NUMBER /'s, and VAR's should he allowed but the category EXP1

is probably not too broad, Proper names (PN) would be desirable since

they are often used in examples in elementary textbooks, but they

present a problem with the dictionary. Common nouns that are

frequently used in sets, for example, (2 apples, 3 banannas, 5 pears)

are also not in the dictionary and would be hard to distinguish from

nouns which are not likely to be so used.

84

IV.8 DATEXP and 'TIMEXP -Rules

(10,1) TIMEX:JD <- INTEGER : INTEGER APM (TIMER ;1; ;3; ;4;)
(10,2) TIMEXP <- INTEGER APM (TIMER ;1; 0 ;2;)
(10,3) TIMEXP <- INTEGER /O'CLOCK/ APM (TIMER ;1; 0 ;3;)
(10,4) TIMEXP <- INTEGER /O'CLOCK, (TIMER ;1; 0 @AM)

(38,1) DATEXP <- MONTH INTEGER (DATE (UNT ;1; !2;))
(38,2) DATEXP <- MONTH INTEGER , INTEGER (DATE (UNT ;1; ;2; ;4;))

Again, no work has been done on the evaluation of these

expressions, but these are the rules which will parse dates and times.

Depending on the method both syntactic and semantic that is adopted for

dealing with calendar-type questions the DATEXP rules may need to be

moved to another portion of the grammar. Mathematical questions

dealing with time appear to be either requests for conversion (for

example, fr.rm 24 to I2-hour time) or compatisons (for example, 'Which

is earlier?'). These function like other units of measurement except

that they cannot be TERM's in arithmetic expressions.

IV,9 AR1THEXP-Rules

(9,1) ARITHEXP <- NP /DIVIDEDBY/ NP
(9,2) ARITHEXP <- Ni' /ADDEDTO/ NP
(9, 3) ARITHEXP <- NP /SUBTRACTEDFROM/ NP
(9,4) ARITHEXP <- NP /MULTIPLIEDBY/ NP
(9,5) ARITHEXP <- NP /DIVIDEDINTC,/ NP

(DIV ;1; ;3;)

(ADDER ;1; ;3;)

(RUBBER ;3; ;1;)
(MULTER ;1; ;3;)
(DIV ;3; ;1;)

The ARITHEXP rules parse arithmetic expl:::s.lons in which the

operator is written out as a verb with a preposition. The TRANSL

portion of the scanner is used to convert 'plus', 'minus', and 'times'

to '+', '-', and ' *'. 'Divided by', 'multiplied by', and 'added to'

85

could also be handled by the TRANSL, but 'subtracted from' and 'divided

into' cannot since they need their arguments reversed in order to use

the regular subtraction and division semantic functions. The scanner

could be made to perform the conversion including the reversal of the

arguments, but this does not seem to be a natural function to expect

the scanner

grammar

to perform. All five ARITHEXP's

to maintain uniformity of treatment.

IV.10 UNIT and NUNIT-Rules

have been included in the

(25,1) NUNITS <- JOINNUNITS (NUNITJOIN (NUNT ;1;))
(25,2) NUNITS <- SUMNUNITS (NUNITJOIN (NUNT ;1;))

(26,1) UNITS <- JOINUNITS (UNITJOIN (UNT ;1;))
(26,2) UNITS <- SUMUNITS (UNITJOIN (UNT ;1;))

(27,1) JOINUNITS <- UNIT1 ;1;

(27,2) JOINUNITS <- JOINUNITS UNIT1 ;1; ;2;

(28,1) JOINNUNITS <- NUNIT1 ;1;

(28,2) JOINNUNITS <- JOINNUNITS NUNIT1 ;1; ;2;

(29,1) SUMNUNITS <- NUNIT1 /AND/ NUNIT1 ;1; ;3;

(29,2) SUMNUNITS <- SUITTUNITS , NUNIT1 ;1; ;3;

(29,3) SUMNUNITS <- NUNIT1 , NUNIT1 ;1; ;3;

(29,4) SUMNUNITS <- SUMNUNITS , /AND/ NUNIT1 ;1; ;4;

(29,5) SIJMNUNITS <- SUMNUNITS /AND/ NUNIT1 ;1; ;3;,

(30,1) SUMUNITS <- UNIT1 /AND/ UNIT1 ;1; ;3;

(30,2) SUMUNITS <- SUMUNITS , UNIT1 ;1; ;3;

(30,3) SUMUNITS <- UNIT1 , UNIT1 ;1; ;3;

(30,4) SUMUNITS <- SUMUNITS , /AND/ UNIT1 ;1; ;4;

(30,5) SUMUNITS <- SUMUNITS /AND/ UNIT1 ;1; ;3;

J1,1) UNIT1 <- /NUMBER/ /OPER/ UNIT (;1; (;2; ;3 ;))

(31,2) UNIT1 <- /A/ /OPER/ UNIT (MAKEUNIT (1 (;2; ;30))
(31,3) UNIT1 <- /NUMBER/ UNIT (;1; (;2;))
(31,4) UNIT1 <- /a/ UNIT (1 (;2;))

(32,1) NUNIT1 <- INTEGER NUNIT (;1; (;2;))
(32,2) NUNIT1 <- DET NUNIT (1 (;2;))

86

Again the evaluation procedures for theae have not yet been

written so the rules have not been extens,lvely tested. I have created

the category :TIJN-M; for ones, tens, hundreds, ec. Their evaluation is

sufficiently different from other UNITs (like inches, teaspoons, etc.),

that this distinction which can easily be made by the grammar provides

useful information to the evaluation program.

These ruisc were discussed in Se,:tion 1X1.4 as an example of

the handling of the ambiguity problem. The rules as they appear here

will produce all of the derivations discussed in Section 11104 but,

unfortunately, they will also produce a few unacceptable ambiguities.

The expression

5 yds., 2 ft., and 3 in, and 4 yds., 2 ft., and 5 in0

is a two-element list that needs to parsed by LnTOFEXP with the two

elements on the list each parsed by SUMUN1TS which forms lists of units

into a single compound unit. How.a4er, allowing sublists of the

LISTOF'EXP expression to be parsed by 87YrITNITS has oasetrophic results.

The way the ruies 62.6,nd SUMUNiTS can pirAc. ,Dff almost any sublist in

additIon to the .,eP tht it 61 po;sed to handle. As the lists

beome isnger the ambuitlee rapJAiy, These rules need very

careful rewrA;:1.ng bato%e .'kAey will work propel.ly.

Single unite wIll be parsed 6y ,XIMNIIM A single unit,

either alone or as an element of a list, must always consist of at

least two pacts -- the type of the unit and the rimber, for example, '3

feet'. 'Unit names alone are not parsed by these rule, The determiner

87

/A/ in, for example, 'a foot equals 12 inches' means one so the '1' has

been inserted in the semantic function. The category /OPER/ contains

the words 'square', 'cubic', etc, This method was chosen in preference

to our original method of using the TRANSL to join 'square' and 'cubic'

to the unit name, Due to abbreviations of the two words with and

without periods, 'square feet' alone took twelve entries in the TRANSL.

The current method also reflects the more proper approach to the

evaluation of the construction.

(33,1)

(33,2)

(33,3)

(33,4)

IV.1 1

UNITLIST3
UNITLIST3
UNITLIST3
UNITLIST3

Geometric Measurements

<-

<-
<-

<-

UNITS MEASWORD
UNITLIST3 , UNITS MEASWORD
UNITLIST3 /AND/ UNITS MEASWORD
UNITLIST3 , /AND/ UNITS MEASWORD

(34,1) UNITLIST4 <- UNITS /BY/ UNITS
(34,2) UNITLIST4 <- UNITLIST4 /BY/ UNITS
(34,3) UNITLIST4 <- UNITS MEASWORD
(34,4) UNITLIST4 <- UNITLIST4 /BY/ UNITS MEASWORD

(35,1) UNITLIST5 <- UNITS
(35,2) UNITLIST5 <- /NUMBER/ /BY/ /NUMBER/ UNIT
(35,3) UNITLIST5 <- /NUMBER/ /BY/ /NUMBER/ /BY/ /NUMBER/ UNIT

(36,1) UNITLIST6 <- /3D/ UNITS
(36,2) UNITLIST6 <- /3D/ UNITS /AND/ /3D/ UNITS
(36,3) UNITLIST6 <- /3D/ UNITS , /3D/ UNITS , /AND/ /3D/ UNITS
(36,4) UNITLIST6 <- /3D/ UNITS , /3D/ UNITS /AND/ /3D/ UNITS

(37,1) UNITLISTS <- UNITLIST3
(37,2) UNITLISTS <- UNITLIST4
(37,3) UNITLISTS <- UNITLIST5
(37,4) UNITLISTS <- UNITLIST6

The semantic functions for all of these rules are currently

UNDEFINED. The UNITLIST rules parse the measurements of geometric

88

figures. These measurements can he given a) in an adjectival form ('a

2 X 3 inch rectangle'), h) in a relative clause ('a rectangle whose

dimensions are length 3 inches and width 2 inches'), or c) in an

appositive position ('a rectangle, 2 inches wide and 3 inches long').

The noun phrase rules for these three cases are:

a) NP6 <- UNITLISTS GEOFIGURE
b) NP6 <- GEOFIGURE RELPOSPRONS
c) NP6 <- GEOFIGURE , UNITLISTS ,

GEOFIGURE is the lexical category for nouns like 'square' and

'rectangle', The purpose at the semantic functions for the UNITLIST

rules will be to put the measurements and their associated dimensions

into a standardized format regardless of the format of the input. The

measurements will then be attached to the name of the geometric figure

at the NP6 level,

IV,12 Relative Clauses

(52,1) RELPOSPRONS <- RELPRON RLPR ;2;

(52,2) RELPOSPRONS <- RELPOS RLPS ;2;

(52,3) RELPOSPRONS <- RELPRON RLPR /AND/ RELPRON RLPR (I ;2; ;50
(52,8) RELPOSPRONS < RELPRON RLPR /AND/ RLPR (i ;2; ;4;)

(54,1) RLPR <- LINK SUBST/E7.P ;2;

(54,2) RLPR <- LLNK uNirLIsTs ;2;

(54,3) RLPR <- /HAVE/ ;DIIENSIONS/ PUNCHUICE UNITLISTS UNDEFINED
(54,4) RLPR <- 71P ;2;

(54,5) RLPR <- /HAVE/ UNITL1ST6 UNDEFINED
.54,6) RLPR <- /HAvr.',/ P7!CNG10E LISIOFEXP UNDEFINED
(54,7) RLPR <- /HAVE/ NAvENP ;2;

(54,8) RLPR <- HIPAS ;1;

(54,9) RLPR <- /HAU/ GO!,f.P1HNP UNDEFINED

The relati. is pron,on (RELPRON) are 'Lhaui .tnd 'whi.h1 and the

relative possessive (RELPOS) is 'whose'. The relative clauses using a

89

relative pronoun have been fully implemented (except for those

involving units), but the relative possessives which are much more

complicated semantically have not yet been implemented and may be

disregarded here. Their treatment will be similar to that for HAVENP's

which they strongly resemble. The semantic function for noun phrases

containing a relative clause is intersection. For example, 'the

factors of 12 that are prime numbers' are found by intersecting the set

of factors of 12 with the set of prime numbers.

I will give an example for each of the RELPOSPRONS-rules that

use relative pronouns:

(52,1) that are less than 5

(52,2) that are less than 5 and that are greater than 2
(52,8) that are less than 5 and are greater than 2.

[Note: 'that are less than 5 and greater than 2' will
be parsed by (52,1) in combination with (54,1) because
'less than 5 and greater than 2' is parsed by MIST.]

These rules only allow two elements in a list. If this is found to be

inadequate, recursive listing rules can easily be written. Phrases of

the form RELPRON RLPR RELPRON RLPR ('an even number that is less than 5

that is greater than 2') will be parsed by successive applications of

RELPOSPRONS in the NP rules.

Rules (54,2), (54,3), (54,5) and (54,6) are used for relative

clauses which give geometric measurements (see Section IV.11 above).

Rule (54,1) is the most common form of relative clause. The SUBST/EXP

may be any one of the following:

90

(1) a noun phrase:
'that is a prime number'

(2) an adjective:

'that is even'
(3) a prepositional phrase:

'that is between 5 and 10'
(4) a unit-conversion phrase:

'that is in lowest terms'
(5) an arithmetic relation:

'that is less than 5'
(6) an EXP:

'that is 2% of 20'

Examples of Rules (54,4) and (54,7)-(54,9) are:

(54,4) an improper fraction that equals the whole number 21
(54,7) a fraction that has 2 as denominator
(54,8) the odd number that 12 has as a factor
(54,9) numbers that have more than 2 factors

(55,1)
(55,2)
(55,3)

IV.13 Prepositions

NP (BETWEEN ;2; ;4;)

(BEFORE ;2;)
(AFTER ;2;)

PREPHRASE1
PREPHRASE1
PREPHRASE1

<- /BETWEEN/ NP /AND/
<- /BEFORE/ NP
<- /AFTER/ NP

(55,4) PREPHRASE1 <- /IN/ EXP UNDEFINED
(55,5) PREPHRASE1 <- /IN/ DET APPOSN EXP UNDEFINED

(56,1) PREPHRASE <- PREPHRASE1 /OR/ PREPHRASE1 (CHL ;1; ;3;)

(56,2) PREPHRASE <- PREPHRASE1 /AND/ PREPHRASE1 (I ;1; ;3;)

(56,3) PREPHRASE <- PREPHRASE1 ;1;

(56,4) PREPHRASE <- /NOT/ PREPHRASE1 (C ;2;)
(56,5) PREPHRASE <- /NEITHER/ PREPHRASEI /NOR/ PREPHRASE1

(NOR ;2; ;4;)
(56,6) PREPHRASE <- /EITHER/ PREPHRASE1 /OR/ PREPHRASE1

(U ;2; ;4;)

I studied the use of prepositions in the entire corpus of [23],

both in the questions and in the exposition. I discovered that the use

of prepositions in the exposition was significantly broader than the

use in the questions. The number of prepositions and the variety of

use of each is sufficiently small in questions to be manageable in the

91

first stage of our program. Certain preposition uses like the use of

'hy' and 'to' in 'Count by fives to 100!' are integrally related to the

verb. I will discuss these in Section IV.22. Another common use of

prepositions in elementary mathematics is to indicate ordering, for

example, 'in order from largest to smallest'. The ORDERING rules will

be discussed in Section IV.21. And the use of prepositions in the

expression of arithmetic operations like 'added to' and 'divided by'

was discussed in Section IV.9.

I found fourteen prepositions used in the complete corpus of

[23]. Of these the four least frequently used prepositions (about, on,

over, and without) have not been included in our grammar. Also,

certain infrequent uses of another six prepositions (by, for, from, in,

into , and to) have not been included, but the majority of uses of

these six have been included. And the remaining four prepositions (as,

between, of and with) have been completely implemented. I will discuss

each one of the fourteen prepositions and indicate which uses of it we

have implemented.

1) About has not been implemented. It was found only in the

contexts 'talking about' and 'asked about'

2) As is used in conversions, for example, 'Express .04 as a

percent!' and will be discussed in Section IV.18.

3) Between was found to have only the mathematical meaning of

a number being between two other numbers.

4) a is used in the context of arithmetic operations

92

('multiplied by'), with other verbs ('count by'), and in giving

geometric measurements ('2 by 4 in.'). Also certain instances of 'by'

are handled by the TRANSL file. 'Divisible by' is TRANSL'd to DIVBY

which is an arithmetic relation. 'Divisible by 5' creates a set in the

same way that 'greater than 5' does. I have also TRANSL'd 'can be

divided by' to 'is DIVBY'. 'By size' is TRANSL'd to 'in order'. There

were other uses of 'by' like the following:

a) Check by using the inverse operation
b) We can check subtraction by addition
c) Find an equal fraction by multiplying the numerator

and denominator...
d) Solve each equation by rewriting it as an equation

using division.

There seems to be a common pattern in these examples, but we have not

yet implemented this use of 'by'.

5) For is being treated as equivalent to 'of' except in the

phrase 'except for' which is TRANSL'd. Some examples of this use are:

1) Write the simplest name for 300+40+6!
2) Find the answer set for (3,4,5j (4,51!

3) What is the least common denominator for 1/4 and 5/6?
4) Find a solution for the equation 5+X = 10!

The semantic function for 'of' is (APP ;1; ;3;). For example, 'the

factors of 12' are found by applying the FACTOR function to 12. Thus,

'the solution for the equation 5+x=10' will be found by applying the

procedure for solving equations to the given equation. Another use of

'for' in mathematical contexts which will have to be considered is the

use of 'for' in phrases like 'for any number N'. We might also write a

rule for the following format which is used frequently in [23):

We write: in, for inch or inches.

93

Other uses of 'for' were found in [23]. Some of the phrases were:

1) A reason for
2) Distributive law for multiplication over addition
3) Standard unit of measure for area
4) For many purposes
5) Symbol for zero

6) From is used in ORDERINGs. It is also used with the verb

'convert' as in 'Convert 3/5 from a fraction to a decimal!'. The only

other use found in [23] was with the verb 'obtain' and this has not

been implemented.

7) In is a very common preposition. The following are the

uses which have been implemented:

a) The rule NP1 <- /THE/ EXP1 /IN/ EXP1 has been
written for expressions like 'the 9 in 891'. This
expression evaluates to 9 tens which seems to be the
intended meaning in the text where questions like 'What
is the 9 in 891?' are asked.

b) 'In' is used in requests for conversion, for
example 'Write 42 in Roman numerals!' and 'express the

answer in cubic inches!'

c) The two expressions 'in lowest terms' and 'in
expanded form' appear so frequently that we have

TRANSL'd them to single words and made them terminal
categories in the grammar.

d) 'In' is often used to mean membership. Two

examples are 'Is 8 in [6,7,8)?' and 'Rename a fraction
in the pair..,'.

e) 'In order' as in 'list in order' is TRANSL'd to
a single word and used in ORDERINGs.

f) Expressions like 'earlier in the day' are

TRANSL'd to 'earlier' since 'in the day' provides no
needed information to the evaluator.

g) 'In' is used to state or request measurements,
for example, 'How many days are there in September?'
and 'There are 12 inches in a foot.'

94

There are other uses of 'in'. We would like to find a common

method of dealing with at least some of the seven uses above, as well

as many which have not yet been dealt with at all,

8) Into is used with the verb 'divide'. Examples like the

following were found in [23]:

a) If we divide a set of things into two sets
having the same number of things, each of the small
sets is one half of the whole sec,

b) When we divide something into three parts the
same size, each part is one third of the whole thing.

c) If we divide a set of things into thirds, we
make three small sets.

This use of 'divide into' has not been implemented, but we have

included rules which handle 'divide into' when it is used for ordinary

division, for example, 'Divide 7 into 561',

9) Of is the most commonly used preposition in the context of

elementary mathematics. It is used for specifying functions and their

arguments, for example, 'factors of 12', 'union of [a) and [b)', 'sum

of 2 and 3', 'subset of fa 1)1', 'set of numbers less than 3',

'numerator of 2/3', 'area of a 2 inch square', 'number of days in

September', and 'member of f

10) On has not been implemented in this grammar. It was found

in phrases such as: 'Show 4+2 on a number line', 'perform the union

operation on...', 'the operations on sets', 'on each side', and 'on a

thermometer'.

11) Over was found only in specifications of the distributive

laws, for example, 'multiplication over division'

95

12) To appears with the verbs: count, equal, round, change,

and convert. It is also used in ordering expressions, e.g., 'from

largest to smallest'. There were two other phrases that we have not

dealt with, 'common to' and 'to the right of'.

13) With is TRANSL'd to 'that has'. Some examples are:

a) The set with no things in it..,
b) The volume of a box with length 7 inches...
c) Fractions with the same denominator...
d) A number with exactly two factors...

When other uses of 'with' (note that no others were found in [23]) are

implemented it will no longer be practical to use the TRANSL in this

way. Hopefully, there will be a clear-cut grammatical way to

discriminate between the uses.

14) Without was found in the sentence, 'We can multiply the

dividend and divisor by the same number without changing the value of

the expression.'

The prepositions 'before' and 'after' did not appear in [23]

but we have implemented them with the meanings successor and

predecessor, for example, '2 comes before 3',

Of all these prepositions, only 'between', 'before', 'after',

and 'in' (in the sense 'of membership) are included in the category

PREPHRASE given at the beginning of this section. Sets can be

constructed by the evaluator from these prepositional phrases, for

example, the set of numbers between five and ten. PREPHRASE's are one

of the types of SUBST's.

96

IV.14 SUBST-Rules

(58,1) SUBST <- SUBST1 ;1;

(58,2) SUBST <- SUBST1 /AND/ SUBST1 (I ;1; ;3;)

(58,3) SUBST <- SUBST1 /OR/ SUBST1 (CHL ;1; ;3;)

(58,4) SUBST <- SUBST1 , SUBST1 , /AND/ SUBST1 (IER ;1; ;3; ;6;)

(58,5) SUBST <- SUBST1 , SUBST1 /AND/ SUBST1 (IER ;1; ;3; ;5;)

(58,6) SUBST <- SUBST1 , SUBST1 , /OR/ SUBST1 (CHL ;1; ;3; ;6;)

(58,7) SUBST <- SUBST1 , SUBST1 /OR/ SUBST1 (CHL ;1; ;3; ;5;)

(58,8) SUBST <- /NEITHER/ SUBST1 /NOR/ SUBST1 (NOR ;2; ;4;)
(58,9) SUBST <- /EITHER/ SUBST1 /OR/ SUBST1 (U ;2; ;4;)

(59,1) SUBST1 <- NP1 ;1;

(59,2) SUBST1 <- NP3 ;1;

(59,3) SUBST1 <- ADj ;1;

(59,4) SUBST1 <- PREPHRASEI ;1;

(59,5) SUBST1 <- ARITHREL NPVARA (APP (FCN ;1;) ;2;)
(59,6) SUBST1 <- SPECPREP1 ;1;

(59,7) SUBST1 <- V SPECPREP1 ;2;

(59,8) SUBST1 <- /NOT/ SUBST1 (C ;2;)

I will give an example of each of the types of SUBST's given in

rules (59,1) - (59,8),

(59,1) Is 5 an odd number?

(59,2) Are 5 and 7 odd numbers?

!Note: The need for two rules here in
order to parse all the SUBST's which
are noun phrases is caused by the

failure to distinguish singular from
plural.]

(59,3) Is 5 odd?

(59,4) Is 5 between 1 and 10?

(59,5) Is 5 less than 10?

(59,6) Is 2/5 in lowest terms?

(59,7) Is 1/2 expressed as a fraction, a decimal,
or a percent?

(59,8) Is 5 even or not even?

97

The category used in (59,4) is PREPHRASE1 rather than PREPHRASE. In

this as well as the other SUBST-rules, the substantive element is taken

at a level which does not allow listing of the elements or the

complement of the element. Thus the list and complement contained in

the question 'Is 5 odd and not between 1 and 5?' will both be handled

by the top-level SUBST rules. This is necessary when the elements of

the list of SUBST's are not from the same grammatical category. If

PREPHRASE rather than PREPHRASE1 were used, the list in 'Is 8 between 5

and 10 and after 7?' could be parsed by either the PREPHRASE or the

SUBST rules and thus would be ambiguous.

Rules (58,1)-(58,9) parse lists of SUBST's. In Section IV.4

above I discussed the use of CHL and LST as semantic functions for

lists. CHL can be used for lists and choicests of SUBST's. For

example, if CHL is used, the answer to

EX1: Is 2 a factor of 2 and also a multiple of 2?

will be

(QUS (CHL (TV T) (IV T))).

There is, however, another approach which can be taken for

lists. In this approach I (intersection) is used for lists and U

(union) for choicelists, Thus EX1 would be interpreted as meaning

Is 2 in (x I x is a factor of 2j INTERSECTION
(x I x is a multiple of 21

This use of the set-theoretical functions I and U is similar to the

logical approach suggested in Section IV.4 and has the disadvantage

discussed in that section of not providing a complete enough

98

specification of the answer for yes/no questions like EX1. However,

there are constructions involving lists which do rquire the I or U

functions.

EX2: Give a number that is less than 6 and greater than 2!
EX3: Is any number divisible by 6 and not divisible by 3!

The rule we have been using for questions like EX1 and EX3 is

RULE1: Q LINK NP SUBST (S ;1; ;3;)

This rule is too general, The specific determiner used for the NP

should determine the semantic function to be used at the level of

RULE1. The existential quantifier, as in EX3, will require the I

function rather than the S (subset) function. Since EX2 contains the

list in a relative clause which also uses the I function, we might form

the hypothesis that constructions using the I function should use I or

U for any lists contained in the construction and similarly, if the

semantic function is S, lists contained in the construction should use

CHL. In order to implement this hypothesis, we could create the two

categories CHLSUBST and I/USUBST which would be used at the level of

RULE1 instead of the current category SUBST. This change has not yet

been made for two reasons. First the determiners which give us the

information about which semantic function should be used for rules like

RULE1 have not yet been worked out: And second, a more serious problem

is that this approach really does not work satisfactorily.

EX4: Is 2 a factor of 2 or 3?
EX5: Is any number that is a factor of 2 or 3 also

a factor of any other prime number?

99

In these examples, the list '2 or 3' is buried several levels

down in the grammar. In EX4 the levels are SUBST and FCN. In EX5,

they are SUBST, RELPRONS, and FCN. To implement the suggested

approach, a pair of grammatical categories would be needed at each

level in order to carry down the information as to whether CHL or I/U
..

were needed. V This would result in an unnecessarily complicated

grammar. Problems of this sort are much more efficiently handled by

the semantic functions which are more flexible and more powerful than

the grammar. The evaluator works inside-out. A semantic function

needs to be created which will postpone evaluation of the list until

the appropriate time when the information is known as to which function

to use. Until this can be implemented, we have assigned a semantic

function to each of the SUBST-rules and other listing rules which

reflects the most common case for the particular rule.

IV.15 Arithmetic Relations

(74,1) ARITHRELS <- NOT/ARITH ;1;

(74,2) ARITHRELS <- ARITHRELS , NOT/ARITH (I ;1; ;3;)

(74,3) ARITHRELS <- ARITHRELS , /AND/ NOT/ARITH (I ;1; ;4;)

(74,4) ARITHRELS <- ARITHRELS , /OR/ NOT/ARITH (CHL ;1; ;4;)

(74,5) ARITHRELS <- NOT/ARITH /OR/ NOT/ARITH (CHL ;1; ;3;)

(74,6) ARITHRELS <- /EITHER/ NOT/ARITH /OR/ NOT/ARITH (CHL ;2; ;4;)

(74,7) ARITHRELS <- /NEITHER/ NOT/ARITH /NOR/ NOT/ARITH (NOR ;2; ;4;)

(76,1) NOT/ARITH <- ARITHREL NPVARA (APP (FCN ;1;) ;2;)

(76,2) NOT/ARITH <- /NOT/ ARITHREL NPVARA (C (APP (FCN ;2;) ;3;)

[Note: For a discussion of the arithmetic relations
see page 30.]

100

IV.16 Adjective Rules

(80,1) ADP <- /NEITHER/ ADP /NOR/ ADP (NOR ;2; ;4;)

(80,2) ADP <- /EITHER/ ADP /OR/ ADP (CHL ;2; ;4;)

(80,3) ADP <- ADP2 ;1;

(80,4) ADP /NOT/ ADP2 (C ;20
(80,5) ADP <- ADJANDOR (CHL ;1;)

(80,6) ADP <- ADJANDOR ADP2 (CHL ;1; ;2;)

(81,1) ADP2 <- ADJ (STS ;1;)

(81,2) ADP2 <- ADP2 ADJ (I ;1; (STS ;2;))
(81,3) ADP2 <- ADP2 , ADJ (I ;1; (STS ;2;))

(82,1) ADJANDOR <- ADJ /OR/ ADJ (STS ;1;) (STS ;3;)
(82,2) ADJANDOR <- ADJ /AND/ ADJ (STS ;1;) (STS ;3;)

[Note: For a discussion of adjectives see page 29].

IV. 17

(67,1) CONVUNITS
(67,2) CONVUNITS
(67,3) CONVUNITS
(67,4) CONVUNITS
(67,5) CONVUNITS
(67,6) CONVUNITS
(67,7) CONVUNITS
(67,8) CONVUNITS

CONVUNITS-Rules

<- /NEITHER/ CONVUNITS /NOR/ CONVUNITS
<- /EITHER/ CONVUNITS /OR/ CONVUNITS
<- LISTNAMESU
<- LISTNAMESNU
<- LISTOFCONVUNITS
<- CONVUNITSCHOICE
<- CONVUNITS1
<- DET CONVUNITS1

(68,1) CONVUNITS1 <- N
(68,2) CONVUNITS1 <- N RELPOSPRONS

(104,1) LISTNAMESU <- UNITT
(104,2) LISTNAMESU <- LISTNAMESU /AND/ UNITT
(104,3) LISTNAMESU <- LISTNAMESU , UNITT
(104,4) LISTNAMESU <- LISTNAMESU , UNITT , /AND/ UNITT

(105,1) LISTNAMESNU <- NUNIT
(105,2) LISTNAMESNU <- LISTNAMESNU /AND/ NUNIT
(105,3) LISTNAMESNU <- LISTNAMESNU , NUNIT
(105,4) LISTNAMESNU <- LISTNAMESNU , NUNIT , /AND/ NUNIT

101

Many questions and especially commands in elementary

mathematics call for conversion of an expression from one form to

another, for example,

EX1: Give 1/4 as a decimal and as a percent!

The rules in this section deal with the forms being converted to, which

in EX1 are 'decimal' and 'percent'. The semantic functions for all of

these rules are currently UNDEFINED. The CONVUNITS rules parse lists

and choicelists of form names and also rule (67,8) allows an optional

determiner before the form name. There are several lexical categories

of nouns. The relevant noun categories for these rules are UNIT,

NUNIT, and N. UNITs and NUNITs were discussed IV.10. N's

are nouns which name sets represented by a !*-..racteristic function.

Examples are number, fraction, decimal, Roman numeral, and whole

number. Sometimes the N will be modified by a relative clause (rule

(68,2)) as in 'Give .10 as a fraction whose denominator is 100!'

IV.18 CONVPREP-Rules

(66,1) CONVPREP <- /AS/ UNDEFINED
(66,2) CONVPREP <- /TO/ UNDEFINED
(66,3) CONVPREP <- /IN/ UNDEFINED

These are the prepositions used in the phrases giving the

CONVUNIT. Certain prepositions are commonly used with certain verbs,

for example, 'express as', 'change to', and 'write in', but they can be

treated as equivalent here because the verbs are all changed to 'give'

either by the TRANSL if that is their only use or the dictionary if

there are other uses of the verb

102

IV.19 SPECPREPHRASE-Rules

(61,1) SPECPREPHRASE
(61,2) SPECPREPHRASE
(61,3) SPECPREPHRASE

(61,4) SPECPREPHRASE
(61,5) SPECPREPHRASE

(61,6) SPECPREPHRASE
(61,7) SPECPREPHRASE
(61,8) SPECPREPHRASE
(61,9) SPECPREPHRASE
(61,10) SPECPREPHRASE

<- SPECPREPHRASE /OR/ SPECPREPHRASE
<- SPECPREPHRASE /AND/ SPECPREPHRASE
<- V SPECPREPI
<- /NOT/ V SPECPREP1
<- /EITHER/ V SPECPREP1 /OR/ V SPECPREP1
<- /NEITHER/ V SPECPREP1 /NOR/ V SPECPREPI
<- SPECPREP1
<- /NOT/ SPECPREP1
<- /NEITHER/ SPECPREP1 /NOR/ SPECPREP1
<- /EITHER/ SPECPREP1 /OR/ SPECPREP1

(62,1) V <-
(62,2) V <- /EXPRESSED/

These rules parse lists of the special prepositional phrases

which are used to give CONVUNITS, and they also parse the complements

of the phrases. Note that here as in several other places in the

grammar the syntax for 'not' when it appears in various positions in a

list has not been carefully worked out. There is a problem in deciding

when an initial 'not' should be forced to extend to all members of the

list and when it should not. The category V includes the verbs

'expressed' and 'equal'. These verbs may optionally precede the

SPECPREP1. Examples are 'expressed as a fraction' and 'equal as a

fraction'.

IV.20 SPECPREPI-Rules

(63,1) SPECPREP1 <- /INLOWESTTERMS/
(63,2) SPECPREPI <- /INEXPANDEDFORM/
(63,3) SPECPREP1 <- CONVERSIONS

(64,1) CONVERSIONS <- CONVPREP CONVUNITS /OR/ CONVPREP CONVUNITS
(64,2) CONVERSIONS <- CONVPREP CONVUNITS
(64,3) CONVERSIONS <- CONVPREP CONVUNITS CC1
(64,4) CONVERSIONS <- CONVPREP CONVUNITS , CC1

(64,5) CONVERSIONS <- CONVPREP CONVUNITS CC1 CC1

103

(64,6) CONVERSIONS <- CONVPREP CONVUNITS , CC1 , CC1

(64,7) CONVERSIONS <- CONVPREP CONVUNITS , CC1 CC1
(64,8) CONVERSIONS <- CONVPREP CONVUNITS CC1 , CC1

(65,1) CC1 <- CONVPREP CONVUNITS
(65,2) CC1 <- /THEN/ CONVPREP CONVUNITS
(65,3) CC1 <- /AND/ CONVPREP CONVUNITS
(65,4) CC1 <- /AND/ /THEN/ CONVPREP CONVUNITS

'In lowest terms' and 'in expanded form' are very common

phrases that I have TRANSL'd, but often the word 'form' appears with

other CONVUNITs, for example, 'Is 2 in decimal form?' Another rule is

needed.

I will not discuss the details of Rules (64,1)-(64,8) and

(65,1)-(65,4). A wide variety of syntactic formats is used in these

expressions and I have tried to write rules that will parse all the

different formats. The following are examples of commands which will

use these rules in their syntactic derivation:

a) Express 2 3/4 as a fraction!

b) Express 19 % as a fraction and then as a
decimal!

c) Write 92 of 100 parts as a fraction, as a
decimal, and as a percent

d) Write 478 of 1000 parts as a fraction whose
denominator is 100, 1000, or 10000, then as a decimal
and a percent!

e) Convert 3,1 m. to decimeters, centimeters, and
millimeters!

f) Find the sum of 1/5 and 3/5 and express the
answer as a mixed number or a whole number, if

possible!

104

IV.21 ORDERING-Rules

(69,1) ORDERING <- /INORDER/
(69,2) ORDERING <- /INORDER/ ORDERING!
(69,3) ORDERING <- ORDERING!

(70,1) ORDERING1 <- /STARTINGWITH/ EXP
(70,2) ORDERING1 /STARTINGWITH/ DET COMPADJ
(70,3) ORDERING1 <- /STARTINGWITH/ DET COMPADJ L/CNP3
(70,4) ORDERING1 <- /FROM/ COMPADJ /TO/ COMPADJ

Certain phrases used to request an ordering of the answer have

been TRANSL'd to 'inorder'. This phrase is essentially meaningless

since the evaluator always orders the answer. The important element

when present is the actual specification for the ordering. Rules

(70,1) to (70,4) will parse several ways of giving these

specifications. Examples are:

a) List the factors of 12 in order starting with
the least factor!

b) List the factors of 12 in order from greatest
to least!

c) Arrange 1 m., 1 cm., and 1 km. by size from
smallest to largest.

(60,1)

(60,2)

IV.22

C <-
C <-

Commands Using Special Verbs

/COUNT/ /TO/ EXP /BY/ LISTNAMESNU
/COUNT/ /TO/ EXP /BY/ LISTNAMESNU /AND/ /TO/ EXP /BY/

LISTNAMESNU
(60,3) C <- /COUNT/ /BY/ LISTNAMESNU /TO/ EXP
(60,4) C <- /COUNT/ /BY/ LISTNAMESNU /TO/ EXP /AND/ /BY/ LISTNAMESNU

/TO/ EXP

(60,5) C <- /REGROUP/ NUNITS /AS/ NUNITS

(60,6) C <- /REGROUP/ NUNITS /AS/ NUNITS /AND/ /AS/ NUNITS
(60,7) C <- /REGROUP/ NUNITS /AS/ NUNITS /AND/ NUNITS /AS/ NUNITS
(60,8) C <- /SOLVE/ /THE/ /EQUATION/ F
(60,9) C <- /SOLVE/ F
(60,10) C <- /ROUND/ EXP /TO/ UNITS
(60,11) C <- /ROUND/ EXP /TO/ UNITS /AND/ EXP /TO/ UNITS
(60,12) C <- /ROUND/ EXP /TO/ UNITS /AND/ /TO/ UNITS

105

Certain verbs used in commands need to be dealt with

individually. I have included rules for 'count', 'regroup', 'solve',

and 'round'. The semantic functions are currently UNDEFINED. Examples

of these rules are:

1) Count to 100 by fives!
2) Count to 10 by ones and to 20 by twos!
3) Count by fives to 100!'
4) Count by fives and tens to 100 and by hundreds to 1000!
5) Regroup 1 ten as 10 ones!
6) Regroup 1 hundred as 10 tens and 1 ten as 10 ones!
7) Regroup 1 hundred as 10 tens and 1 ten as 10 ones!
8) Solve the equations b+c=6 and b-c=2!
9) Solve a+5=12!
10) Round .6854 to tenths!
11) Round .853 to tenths and .9637 to hundredths!
12) Round .7596 to hundredths and to tenths!

The rules need to be consolidated so that separate rules are

not needed for multiple specifications of arguments in the commands.

(60,22)

(60,23)
(60,24)

(60,25)

(60,26)

IV.23 Arithmetic Commands

C <- /ADD/ NP /TO/ NP
C <- /SUBTRACT/ NP /FROM/ NP
C <- /MULTIPLY/ NP /BY/ NP
C <- /DIVIDE/ NP /BY/ NP
C <- /DIVIDE/ NP /INTO/ NP

(ADDER ;2; ;4;)

(SUBBER ;4; ;2;)

(MULTER ;2; ;4;)

(DIVVER ;2; ;4;)

(DIVVER ;4; ;2;)

Often these expressions are found not as commands but embedded

in other sentences. Examples are:

a) Find a fraction equal to 1/2 by multiplying the
numerator and denominator by the same number!

b) To find an equal fraction, we can divide both
the numerator and denominator by the same number.

These complex sentences have not been considered at this stage.

'106

IV.24 Basic Command Rule

(60,21) C <- GV NP
(71,1) GV <- /GIVE/
(71,2) GV <- /GIVE/ PERSP

;2;

This is the most common form of command. Many verbs are

included in the category /GIVE/. Rule (71,2) allows commands to be

prefaced by 'give me'. Some illustrative examples are:

a) Give 2 pairs of even numbers whose sum is 12!
b) Find the set of whole numbers N such that N < 7.!
c) Find the members of the set (n : n < 51!
d) Write the sum of 84, 57, and 76!
e) Name the numerator of 3/5!
f) Give 4 fractions equal to 1/4!
g) Give the set of the first ten multiples of 1!
h) List all the factors of 11!
i) Give the prime numbers between 65 and 80!

The evaluator simply outputs the result of evaluating the NP.

IV.25 Special Conversion Commands

(60,13) C <- GV CONVERSIONS NP
(60,14) C <- GV , CONVERSIONS , NP

(60,15) C <- GV CONVERSIONS , NP

(60,16) C <- GV NP ORDERING
(60,17) C <- /CONVERT/ NP /FROM/ CONVUNITS /TO/ CONVUNITS

Most of the commands involving requests for conversion are

parsed by the basic command rule

(60,21) C <- GV NP
in combination with the following NP-rule:

(84,3) NP1 <- NP SPECPREPHRASE .

Some examples are:

a) Express 4/16 in lowest terms!
b) Write 2 3/4 as a fraction!
c) Convert 3' centigrade to Fahrenheit!

107

The semantics for rule (84,3) will be to convert the NP to the

form named in the SPECPREPHRASE. So here again the evaluation is

complete at the NP level

However, in certain commands the order of the arguments is

reversed so rules (60,13)-(60,15) have been written which allow

optional use of commas. An example is:

d) Write in Roman numerals the number of months in a year!

Rule (60,17) parses conversion commands which include the type

of the original expression as well as the type to be converted to. For

example:

e) Convert 3/5 from a fraction to a decimal!

The semantic function will need to check that 3/5 is indeed a fraction

before it converts to decimal.

Rule (60,16) parses commands which contain a request for the

ordering of the answer. For examples see Section IV.21.

IV.26 Combinations of Commands

(60,18) C <- C /AND/ /EXPRESSANSWER/ SPECPREP1
(60,19) C <- C /AND/ /STATEIFEACH/ LINK SUBST
(60,20) C <- C /AND/ C

Many commands include subcommands whi :h are dependent on the

main command, for example,

Write 3.7 + 2.1 in column form and find the sum!

We have not dealt with problems of reference either within a sentence

or between sentences in this stage of the project and thus cannot

108

handle most of these complex subcommands. However, rules (60,18) and

(60,19) do handle two forms of subcommands. The first allows the

questioner to state the desired form of the answer, for example,

Find the sum of 2/5 and 3/5 and express the answer
as a whole number!

The second allows a further question to be asked about the answer to

the main command, for example,

Find all the factors of 15 and state whether each is prime!

Various phrases are TRANSL'd to /EXPRESSANSWER/ and /STATEIFEACH/.

Rule (60,20) will handle compound commands which are complete

in themselves, for example 'Give all the even factors of 12 and give

all the prime factors of 15!'

IV.27 Declaratives

I will not list any of the rules for declaratives. We have

concentrated our efforts at this stage on questions and commands.

There are two primary reasons for working with questions before

declaratives. First, a study of [23] shows that there is less variety

of syntax and vocabulary in questions than declaratives. Declaratives

contain more 1) idiomatic expressions, 2) distinct uses of

prepositions, 3) verbs, 4) phrases with no mathematical representation,

5) pronouns, and 6) references to other sentences in the text. Second,

declaratives require a more sophisticated data base which can be added

to or revised on the basis of the input and which can provide temporary

109

storage for information, Temporary storage is required by some

questions also (namely, those with embedded declaratives), but they

have also been excluded in the first stage.

(83,1)

(83,2)

(83,3)

(83,4)

IV.28 NP-Rules

NP
NP

;1;

;1;

(CHL
(NOR

;2; ;4;)

;2; ;4;)

NP <- L/CNP1
NP <- EXP
NP <- /EITHER/ NP /OR/
NP <- /NEITHER/ NP /NOR/

(107,1) L/CNP1 <- NP1CHOICE (CHL ;1;)

(107,2) L/CNP1 <- LISTOFNP1 (CHL ;1;)

(107,3) L/CNP1 <- NP1 ;1;

(102,1) LISTOFNP1 <-NP1 /AND/ NP1 ;1; ;3;

(102,2) LISTOFNP1 <-LISTOFNP1 , NP1 ;1; ;3;

(102,3) LISTOFNP1 <-NP1 , NP1 ;1; ;3;

(102,4) LISTOFNP1 <-LISTOFNP1 , /AND/ NP1 ;1; ;4;

(102,5) LISTOFNP1 <- LISTOFNP1 /AND/ NP1 ;1; ;3;

(39,1) NP1CHOICE <- NP1 , NP1 ;1; ;3;

(39,2) NP1CHOICE <- NP1 /OR/ NP1 ;1; ;3;

(39,3) NP1CHOICE <- NP1CHOICE , NP1 ;1; ;3;

(39,4) NP1CHOICE <- NP1CHOICE , /OR/ NP1 ;1; ;4;

(39,5) NP1CHOICE <- NP1CHOICE /OR/ NP1 ;1; ;3;

NP is the highest level category for noun phrases. The two

basic types of noun phrases which can be derived from NP are EXP and

NP1. The EXP's are standard arithmetic expressions and the NP1's are

more flexible natural language noun phrases. At this time, EXP's and

NP1's cannot be mixed in lists or choicelists. This needs to be

changed since every EXP can in fact be written as an equivalent NP1.

For example the EXP '1+2' evaluates to the same number as 'the sum of 1

and 2', 'the largest odd facto]. of 12', 'the positive square root of

110

9', etc. However, to allow mixed lists is also to allow ambiguities.

Consider:

EX1: Give the factors of 2, the factors of 3, and
the factors of 4!

There will be two syntactic parses of EX1 if EXP's and NP1's can be

mixed on lists. These parses reflect the following two interpretations

of the sentence.

EX1a: Give (1) the factors of 2, (2) the factors
of the factors of 3, and (3) the factors of the factors
of 4!

EX1b: Give (1) the factors of 2, (2) the factors
of 3 and (3) the factors of 4!

Clearly EX1b is the more plausible interpretation, but the ambiguity is

genuine. Consider another example:

EX2: Are the factors of 12, the largest factor of
12, and the smallest multiple of 12 equal?

EX2a: Are the factors of 12 equal to the factors
of the largest factor of 12 and also equal to the
factors of the smallest multiple of 12?

EX2b: Are the factors of 12 equal to the largest
factor of 12 and also equal to the smallest multiple of
12?

Admittedly, this question is very unlikely to occur, but I chose it as

an example because of its close parallel to EX1. It would be very

difficult to distinguish 'the factors of 2, the factors of 3, and the

factors of 4' from 'the factors of 12, the largest factor of 12, and

the smallest multiple of 12' grammatically, but EX1b is the most

plausible interpretation of EX1 while EX2a is the most plausible

interpretation of EX2. The problem is not solved by prohibiting mixed

111

lists because they are needed in many contexts and in this case if

mixed lists were not allowed EX2 would be parsed only in the incorrect

way. There does not appear to be any feasible way to rewrite the

grammar to avoid the ambiguity. If two syntactic parses have the same

semantic construction, there is no problem, but that is not the case

here. Also, if only one semantic construction can be evaluated there

is no problem, but both interpretations of EX1 as well as both

interpretations of EX2 can be evaluated.

IV.29 NP1 -Rules

(84,1) NP1 <-
(84,2) NP1 <-
(84,3) NP1 <-
(84,4) NP1 <-
(84,5) NP1 <-
(84,6) NP1 <-

L/CNP2 /EXCEPT/ NP
L/CNP2 RELPOSPRONS
NP SPECPREPHRASE
/THE/ EXP1 /IN/ EXP1
DET N VAR /SUCHTHAT/
DET N VAR /SUCHTHAT/

(84,7) NP1 < DET N VAR /SUCHTHAT/

(84,8) NP1 <- DET N VAR /SUCHTHAT/

.;84,9) NP1 <- /THE/ COMPADJ ,'OF/ NP
(84,10) NP1 <- NP2

(108,1) L/CNP2 <- NP2CHOICE
(108,2) L/CNP2 <- LIST0FNP2

VAR ARITHRELS
VAR ARITHRELS

VAR ARITHRELS

EXP2 ARITHREL

(SD ;1; ;3;)

(I ;1; ;2;)

UNDEFINED
UNDEFINED
UNDEFINED

/AND/ VAR ARITHRELS
UNDEFINED

/OR/ VAR ARITHRELS
UNDEFINED

VAR ARITHREL EXP2
UNDEFINED

(MAXF (FCN ;2;) ;4;)

;1;

Rules (84,1) and (84,2) parse expressions

(CHL ;1;)
(CHL ;1;)

of exception and

relative zlauses which appear at the end of a list and are applied to

each member of the list, for example

EX1: Give the factors of 12 and the factors of 15
that are prime! .

Every time these rules are used in a derivation, there will be another

112

derivation of the NP in which the modifier is attached only to the last

element of the list. These rules should actually be more sophisticated

because the presence of a similar modifier on another element of the

list rules out the interpretation in which the scope of the final

modifier is extended. For example,

EX2: the factors of 4 that are even and the factors of 5
that are odd.

should not be parsed by Rule (84,2). The semantic function for rule

(84,1) which parses explicit exceptions is SD (set difference). An

example is:

EX3: All the factors of 12 except 3 are even.

The rest of the NP1 rules are for noun phrases which have a

fairly rigid format and cannot be used in the formation of more complex

noun phrases other than lists. They cannot for instance be modified by

relative clauses. I will give one example of each.

(84,3) 5/10 in lowest terms
(84,4) the 9 in 893
(84,5) a number N such that N < 5
(84,6) a number N such that N< 5 and N> 3
(84,7) the numbers N such that N < 5 or N > 10

(84,8) a number N such that 2< N< 4
(84,9) the largest of 2 cm., 3 m., and 5 mm.

Rule (84,10) allows derivation of the more common noun phrases

by the NP2-rules. The recursive rules for lists of the various levels

of NP's have not been included here since they are the same as the LIST

rules given in many of the preceding sections.

113

IV.30 NP2-Rules

(85,1) NP2 <- /A/ L/CNP3 ;2;

(85,2) NP2 <- /THE/ L/CNP3 ;2;

(85,3) NP2 <- /THE/ /NUMBER/ L/CNP3 (ENMF ;2; ;3;)

(85,4) NP2 <- /ALL/ QU/I/HMNP ;2;

(85,5) NP2 <- /ALL/ /NUMBER/ QU/I/HMNP (ENMF ;2; ;3;)

(85,6) NP2 <- /ALL/ /THE/ L/CNP3 ;3;

(85,7) NP2 <- /ANY/ QU/I/HMNP ;2;

(85,8) NP2 <- /ANY/ /NUMBER/ QU/I/HMNP (NUMF ;2; ;3;)

(85,9) NP2 <- /SOME/ QU/I/HMNP ;2;

(85,10) NP2 <- /THE/ COMPADJ L/CNP3 (MAXF (FCN ;2;) ;3;)

(85,11) NP2 <- /A/ COMPADJ L/CNP3 /THAN/ NP
(I (APP (FCN ;2;) ;5;) ;3;)

(85,12) NP2 <- /A/ COMPADJ L/CNP3 /THAN/ NP RELPOSPRONS
(I (APP (FCN ;2;) ;5;)

(I ;3; ;6;))

(85,13) NP2 <- /THE/ ORDADJ L/CNP3 (ORDFCN 1 ;2; ;3;)

(85,14) NP2 <- /THE/ ORDADJ /NUMBER/ L/CNP3 (ORDFCN ;3; ;2; ;4;)

(85,15) NP2 <- /THE/ ORDADJ COMPADJ L/CNP3 (ORDFCN 1 ;2;

(APP (FCN ;3;) ;4;))

(85,16) NP2 <- /THE/ /NUMBER/ COMPADJ L/CNP3
(ENMF ;2; (APP (FCN ;3;) ;4;))

(109,1) L/CNP3 <- LISTOFNP3
(109,2) L/CNP3 <- NP3CHOICE
(109,3) L/CNP3 <- NP3

(CHL ;1;)

(CHL ;1;)
;1;

The determiners have been worked out for the HAVENP's but not

for the regular NP's so I will not discuss them here. Because of the

difficulties involved, it is reasonable to not tackle the problem of

determiners at the start of the project but to wait until other aspects

of the noun phrases are worked out and some experience has been gained.

Rules (85,10)-(85,16) deal with two of the special categories

of adjectives, ORDADJ and COMPADJ, which are the ordinals and the

comparatives. Note that L/CNP3 will derive a list, a choicelist, or a

single NP3.

(85,10) the largest factor of 5
(85,11) a larger number than 2
(85,12) a larger factor of 4 than 2 that is even

114

(85,13) the first multiple of 10
(85,14) the first 2 multiples of 10
(85,15) the second largest factor of 12
(85,16) the 2 largest factors of 12

The category QU/I/HMNP is used with quantifiers and in

interrogative and 'how many' questions. I will give each of the

QU /I /HNNP rules followed by examples.

(48,1) QU /I /HMNP <- L/CNP3 ;1;

Which factors of 12 are even?
Are any factors of 30 even?

(48,2) QU/I/HMNP <- /OF/ /THE/ L/CNP3 ;3;

Which of the factors of 12 are even?
Are all of the factors of 12 even?

[Note: 'of the' adds no meaning.]

(48,3) QU/I/HMNP <- /OF/ /THE/ L/CNP3 EXP
(I ;3; ;4;)

Which of the fractions 1/2, 3/12, and 2/9 are in
lowest terms?

[Note: This rule allows an explicit list to be given.
In fact the rule is probably unneeded since it is
ambiguous with the rule for appositive nouns, NP6 <-
APPOSN EXP. Most N's also have the lexical category
APPOSN.]

(48,4) QU /I /HMNP < /OF/ /THE/ /NUMBER/ L/CNP3
(ENMF ;3; ;4;)

Are any of the 3 factors of 6 odd?

[Note: The semantic function ENMF checks to be sure
that the NP3 does in fact have the cardinality given by
/NUMBER/. In this case, it must match exactly or there
is an error, for example 'the 5 factors of 6' and 'the
2 factors of 6' both contain an error.]

(48,5) QU/IIHNNP <- /OF/ /THE/ EXP1 L/CNP3 EXP
(ENMF ;3; (I ;4; ;5;))

115

Are any of the 3 fractions 1/2, 3/12, and
2/9 in lowest terms?

[Note: Again, this rule is unneeded because the case
is already adequately handled by the appositive noun
rule. Intersection is probably not the best semantic
function for appositive nouns. Any elements on the
list which were not fractions would simply be
eliminated when in fact an error should be noted. The
ENMF checks that the correct cardinality was given for
the list.]

(48,6) QU/I/HMNP <- /OF/ /THE/ L/CNP3 /AND/ /THE/ /LCNP3
(CHL ;3; ;6;)

Which of the factors of 2 and the factors of
6 are prime?

Are all of the factors of 9 and the factors of
10 odd?

(48,7) QU/I/HMNP <- /OF/ /THE/ L/CNP3 /OR/ /THE L/CNP3
(CHL ;3; ;6;)

Are any of the factors of 9 or the
factors of 3 even?

(48,8) QU/I/HMNP <- QU/I/HMNP /EXCEPT/ NP
(SD ;1; ;3;)

Are all the factors of 12 except 1 and 3
even?

IV.31 NP3-Rules

(86,1) NP3 <- NP4
(86,2) NP3 <- L/CNP3 RELPOSPRONS

;1;

(1 ;1; ;2;)

The adjectives and relative clauses both have the I semantic

function so the order of derivation is unimportant. However, if the

rules for both adjective and relative clause modifiers were at the same

level of the grammar there would be ambiguous derivations since either

116

could be parsed first. Therefore they are derived at different levels

to avoid unnecessary ambiguity. The NP3-leVel derives the relative

clauses. Note that rule (86,2) when applied recursively parses strings

of relative clauses,

are greater than

IV.32

for example, 'numbers

5'.

NP4-Rules for Set Nouns

that are less than 10 that

(87,1) NP4 <- ADP L/CNP5 (I ;1; ;2;)

(87,2) NP4 <- NP5 ;1;

(101,1) NP5 <- N (STS ;1;)
(101,2) NP5 <- N ARITHRELS (I (STS ;1;) ;2;)

(101,3) NP5 <- N PREPHRASE (I (STS ;1;) ;2;)

(101,4) NP5 <- NP6 ;1;

(106,1) NP6 <- PN (STS ;1;)
(106,2) NP6 <- /DAY/ (STS ;1;)

(106,3) NP6 <- /WEEK/ (STS ;1;)

(106,4) NP6 <- /DIMENSION/ (STS ;1;)

(106,5) NP6 <- /3D/ (STS ;1;)

(106,6) NP6 <- MONTH (STS ;1;)

(106,7) NP6 <- GEOFIGURE (STS ;1;)
(106.8) NP6 <- UNITLISTS GEOFIGURE (I ;1; ;2;)

(106,9) NP6 <- APPOSN EXP3 (I (STS ;1;) ;2;)

(106,10) NP6 <- APPOSN , EXP3 , (I (STS ;1;) ;3;)

(106,11) NP6 <- GEOFIGURE UNITLISTS (I ;1; ;2;)

(106,12) NP6 <- GEOFIGURE , UNITLISTS , (I ;1; ;3;)

(106,13) NP6 <- GEOFIGURE RELPOSPRONS (I ;1; ;2;)

(106,14) NP6 <- /EQUATION/ F ;2;

(106,15) NP6 <- /EQUATION/ , F , ;3;

At the NP4-level the rules dealing with noun phrases containing

FCN's can be separated from the rules dealing with noun phrases

containing N's. I will discuss the rules for nouns representing sets

(N's) in this section and the rules for function nouns (FCN's) in the

next section.

117

As the relative clauses have a separate level (NP3), there is a

separate level here for adjectives (NP4). The NP5 level will derive

either an N alone or with an arithmetic relation or a PREPHRASE

('between', 'before', 'after', 'in'). u---"y an arithmetic relation as

a modifier is contained in a relative clause but not always.

EX1: The set of natural numbers less than 3 is [0,1,21 .

The NP6-rules are for the less common lexical categories of

nouns. There are currently nine such categories. These categories

need reworking and will not be discussed here.

(87,3)

(87,4)

(87,5)

IV.33 NP4-Rules for Function Nouns

NP4 <- ADJ/FCNL/C /OF/ NP (APP ;1; ;3;)

NP4 <- FCNL/C /OF/ NP (APP ;1; ;3;)

NP4 <- ADP AND/OR DET ADP FCN/REL /OF/ NP
(CHL (I ;1; (APP ;5; ;7;))

(I ;4; (APP ;5; ;70))
(87,6) NP4 <- ADP FCNL/C /OF/ NP (I ;1; (APP ;2; ;4;))

(96,1) FCNL/C <- FCNLIST ;1;
(96,2) FCNL/C <- FCNCHOICE ii;
(96,3) FCNL/C <- FCN/REL ;1;

(100,1) FCN/REL <- FCN (FCN ;1;)
(100,2) FCN/REL <- FCN RELPOSPRONS (FCNMK (FCN ;1;) ;2;)

(97,1) FCNLIST <- FCN/REL /AND/ FCN1 (CHL ;1; ;3;)

(97,2) FCNLIST <- FCN/REL , FCN1 , /AND/ FCN1 (CHL ;1; ;3; ;6;)

(97,3) FCNLIST <- FCN/REL , FCN1 /AND/ FCN1 (CHL ;1; ;3; ;5;)

(98,1) FCNCHOICE <- FCN/REL /OR/ FCN1 (CHL ;1; ;3;)

(98,2) FCNCHOICE <- FCN/REL , FCN1 /OR/ FCN1 (CHL ;1; ;3; ;6;)

(98,3) FCNCHOICE <- FCN/REL , FCN1 /OR/ FCN1 (CHL ;1; ;3; ;5;)

(99,1) FCN1 <- FCN/REL ;1;

(99,2) FCN1 <- DET FCN/REL ;2;

(118,1) DET <- /A/ ;1;

(11 2) DET <- /THE/ ;1;

118

(95,1)

(95,2)

(92,1)

ADJ/FCNL/C <- ADJ/FCNLIST ;1;

ADJ/FCNL/C <- ADJ/FCNCHOICE ;1;

ADJ!FCNCHOICE <- ADP FCN/REL /OR/ ADJFCN1
(CHL (FCNMK ;2; ;1;) ;4;)

(92,2) ADJ/FCNCHOICE <- ADP FCN/REL , ADJFCN1 , /OR/ ADJFCN1
(CHL (FCNMK ;2; ;1;) ;4; ;7;)

(92,3) ADJ/FCNCHOICE <- ADP FCN/REL , ADJFCN1 /OR/ ADJFCN1
(CHL (FCNMK ;2; ;1;) ;4; ;6;)

(93,1) ADJ/FCNLIST <-ADP FCN/REL /AND/ ADJFCN1
(CHL (FCNMK ;2; ;1;) ;4;)

(93,2) ADJ /FCNLIST <-ADP FCN/REL , ADJFCN1 , /AND/ ADJFCN1
(CHL (FCNMK ;2; ;I;) ;4; ;7;)

(93,3) ADJ/FCNLIST <- ADP FCN/REL , ADJFCN1 /AND/ ADJFCN1
(CHL (FCNMK ;2; ;1;) ;4; ;7;)

(94,1) ADJFCN1 <- ADP FCN/REL (FCNMK ;2; ;1;)

(94,2) ADJFCN1 <- DET ADP FCN/REL (FCNMK ;3; ;2;)

There is a problem with determining the scope of determiners

and modifiers in noun phrases. Until this problem has been solved, I

have assumed in the above rules that lists of function names will

either have a single adjective at the head of the list which is

intended co cover each element of the list or an adjective attached to

each function name on the list (or, of course, no adjectives at all).

Rule (87,4) is for the case with no adjectives, Rule (87,6) for a

single adjective with a single function name or a list of function

names, and Rule (87,3) for lists or choices (not singleton lists) where

each element has an adjective. Another problem is that lists will at

this level already have had the initial determiner (if any) parsed by

an NP2 rule, There may or may not be determiners attached to the other

elements of the list. Note that it is very unlikely that these

determiners will differ from the initial determiner so they can be

ignored.

119

EX1: the sum and the product of 3 and 4
EX2: the even factors and prime factors of 12

Lists whose elements have different determiners will usually have each

element fully specified, for example

EX3: all the factors of 2 and 3 factors of 12

and are therefore parsed as LISTOFNP1's rather than by these rules.

The category FCN1 has been added to parse the optional determiner

preceding elements other than the first of the list of functions.

Rule (87,5) parses noun phrases like

EX4: the even or the odd factors of 12 .

The semantic function needs to make two calls on the FACTOR function

with one of the adjectives associated with each call and to designate

12 as the argument to each call on the FACTOR function.

The category FCN/REL allows for an optional relative clause

following the function name, for example,

EX5: the factors that are even of 12 .

The semantic function FCNMK has been used in rule (100,2). This

semantic function was discussed in Section 11.3 on the HAVENP's. It

creates new functions. In the above example, it will create an

EVENFACTOR function. In order to use the intersection function for

this example, the function, the relative clause, and the argument to

the function would all need to be parsed at the same level. If this

were done the semantics could apply the function to the argument and

then intersect the result with the relative clause. In fact, the

function and the argument are parsed by rule (87,4) where the semantic

120

function is APP (apply). However, to also parse the relative clause at

this level, would mean that recursive rules for lists could not be

used. Each case would need a separate rule at the NP4 level.

Rules (87,3) and rules (95,1)-(95,2), (92,1)-(92,3), (93,1)-

(93,3), and (94,1)-(94,2) are used for lists of functions each of which

has an associated adjective. Here again FCNMK is used because the

adjective, function name, and argument cannot all be parsed at the NP4

level unless the use of recursive rules for lists is sacrificed.

IV.34 2FCN-Rules

(87,7) NP4 <- ADP 2KNL/C /OF/ LSTNP/EXP (I ;1; (APP ;2; ;4;))
(87,8) NP4 <- ADP AND/OR DET ADP 2FCN /OF/ LSTNP/EXP

(CHL (I ;1; (APP ;5; ;7;))
(I ;4; (APP ;5; ;7;)))

(87,9) NP4 <- 2FCNL/C /OF/ LSTNP/EXP (APP ;1; ;3;)

(88,1) LSTNP/EXP <- LISTOFNP1
(88,2) LSTNP/EXP <- LISTOFEXP

(LST ;1;)
(LST ;1;)

(89,1) 2FCNL/C <- 2FCN AND/OR 2FCN1
(89,2) 2FCNL/C <- 2FCN , 2FCN1 , AND/OR 2FCN1
(89,3) 2FCNL/C <- 2FCN , 2FCN1 AND/OR 2FCN1
(89,4) 2FCNL/C <- 2FCN

(90,1) 2FCN1 <- 2FCN
(90,2) 2FCN1 <- DET 2FCN

(91,1) AND/OR <- /AND/
(91,2) AND/OR <- /OR/

(CHL (FCN ;1;) ;3;)

(CHL (FCN ;1;) ;3; ;6;)

(CHL (FCN ;1;) ;3; ;5;)

(FCN ;1;)

(FCN ;1;)
(FCN ;2;)

The category 2FCN is for function nouns which always have two

or more arguments, for example, intersection, sum, and common factors.

The category LSTNP/EXP is used for the argument to the 2FCN. The

semantic function for these argument lists in Rules (88,1) and (88,2)

121

is LST. Currently, the rules for parsing lists and choicelists of

2FCN's (Rules (89,1)-(89,4)) have been combined using the category

AND/OR. No examples of relative clauses embedded in 2FCN noun phrases

have been found so the FCN/REL option has not been included for them.

Because adjectives are so infrequently used in this context I have in

these rules allowed only a single adjective preceding a list of 2FCN's.

A better approach might be to divide the category 2FCN into two

separate categories for the 2FCN's like 'intersection' which never have

adjective modifiers and the 2FCN's like 'common factor' which can be

modified by adjectives.

IV.35 Existence Questions

(43,1) Q <- LINK /THERE/ L/CNP1
(43,2) Q <- LINK /THERE/ L/CNP3

(EXIST ;3;)
(EXIST ;3;)

Rules (43,1) and (43,2) are for questions of the form 'Are

there ...?' The need for two rules is again caused by the incompletion

of the rules for determiners. The semantic function EXIST checks

whether or not the set is empty.

IV.36 If Questions

(43,13) Q <- /IF/ D , Q (IFTHEN (LST ;2; ;4;))
(43,14) Q <- /IF/ F , Q (IFTHEN (LST ;2; ;4;))

There has not yet been any implementation of the evaluation of

'if-then' questions. The 'if' part may be either a declarative or an

arithmetic formula.

122

IV.37 Idiomatic Question Formats

(43,28) Q <- /DOYOUKNOW/ NP ;2;

(43,29) Q <- /DOYOUKNOW/ INTER NP LINK ;3;

(43,31) Q <- /DOYOUKNOW/ INTER EXP1 IIAVENP NP /RAVE/
(NMF ;3; (APP ;4; ;5;))

(43,32) Q <- /CANYOU/ C ;2;

These rules show one way that idiomatic expressions can be

handled. In this approach, the common expressions need to be

identified and either TRANSL'd to an already existing expression which

plays the same role in the grammar or, if the grammatical role of the

new expression is unique, new rules written. Thus 'are you familiar

with' could be TRANSL'd to 'do you know' and many expressions could be

TRANSL'D to 'give' as it is used in commands, There are already many

synonyms for 'give' in the TRANSL and many more possibilities. It is a

serious question as to whether this is the right approach. We need to

know first how many such expressions there will be in actual use and

also how many common grammatical constructions there are that are not

covered by the present grammar. Unless these numbers prove to be very

small which is unlikely, the method of manual addition to the TRANSL

and the grammar is not feasible. Instead some other apzroach to the

habitability problem will be needed. Examples of the above rules are:

(43,28) Do you know the largest common factor of 6 and 15?
(43,29) Do you know what the sum of 5 and 12 is?
(43,30) Do you know what even factors 12 has?
(43,31) Do you know which 6 factors 12 has?
(43,32) Can you give the factors of 12?

IV.38 Questions With Introductory Clauses

(43,36) Q <- /EXCEPT/ NP , Q (SD ;4; ;2;)

123

There are undoubtedly many other introductory clauses which can

precede questions, but we have at this stage included only the rule for

a clause stating an exception, for example,

EX1: Except for the number 2, are there any even prime numbers?

Prepositional phrases using 'in' are common introductory phrases, for

example,

EX2: In the fraction 2/3, which number is the denominator?

Most of these other introductory clauses require intra-sentence

referencing and more sophisticated use of the data base than is

currently implemented.

IV.39 Questions Beginning with a Linking Verb

(43,10) Q <- LINK NP SUBST/EXP (S ;2; ;3;)
(43,11) Q <- LINK /NUMBER/ L/CNP3 SUBST/EXP

(S (LST (CARDINALITY (I ;3; ;40))
(APP (FCN @EQL) (LST ;2;)))

(43,12) Q <- LINK CHOICELIST COMPADJ (MAXF (FCN ;3;) ;2;)

(41,1) CHOICELIST <- EXPCHOICE (CHL ;1;)

(41,2) CHOICELIST <- NP1CHOICE (CHL ;1;)

Questions parsed by rule (43,10) were the most commonly found

questions in [23]. Examples are:

Is 2 even?
Is 10 a multiple of 5?
Is 4 < 5?

Is 6 between 1 and 10?

Is 5 a multiple of 10 or a factor of 10?
Is 2 or 3 odd?

The semantic function for this rule is subset. More rules are needed

for this question form which are sensitive to the determiner used. For

example,

124

EX1: Are any factors of 9 even?

which has an existentf plantlfier should use intersection rather than

subset. An example of rule (43,11) is:

EX2: Are 2 factors of 12 odd?

I have not included the rule

RULE1: NP2 <- /NUMBER/ NP3

in the NP rules, but have instead included rules such as this one at

the top level. In line with the objective of shifting a large part of

the workload from the grammar to the semantic functions, RULE1 should

be implemented with a suitable semantic function. The rule

RULE2: NP2 <- /THE/ /NUMBER/ NP3 (ENMF ;2; ;3;)

is currently included in the NP-rules. The semantic function ENMF

checks that the cardinality of NP3 matches the /NUMBER/ exactly.

EX3: Are the 3 factors of 9 odd?

An example of rule (43,12) is

EX4: Is 2 or 4 larger?

The only type of NP used with a COMPADJ is a CHOICELIST,

IV.40 Questions Beginning with an Auxiliary Verb

(43,4) Q <- AUXIL NP /COME/ /BEFORE/ NP (S ;2; (BEFORE ;5;))
(43,5) Q <- AUXIL NP /COME/ /AFTER/ NP (S ;2; (AFTER ;5;))
(43,9) Q <- AUX NP ARITHCHOICE NP (PICKFCN (CHL ;3;) (LST ;2; ;4;))
(43,3) Q <- AUXIL1 NP VEQUAL NP (S ;2; (APP (FCN EQL) ;4;))
(43,33) Q <- MOD NP /BE/ SUBST/EXP (S ;2; ;4;)

(43,34) Q <- MOD /NUMBER/ L/CNP3 /BE/ SUBST/EXP
(S (LST (CARDINALITY (I ;3; ;5;)))

(APP (FCN @EQL) (LST ;20))
(43,35) Q <- MOD /NUMBER/ /BE/ ARITHCHOICE EXP1

(PICKFCN (CHL ;4;) (LST ;2; ;5;))
(51,1) AUXIL <- AUX
(51,2) AUXIL <- MOD

125

(42,1) AUXIL1 <- /DOES/
(42,2) AUXIL1 <- MOD

(79,1) VEQUAL <- =
(79,2) VEQUAL <- /NAME/

(117,1) ARITHCHOICE <- ARITHREL /OR/ ARITHREL (FCN ;1;) (FCN ;3;)
(117,2) ARITHCHOICE <- ARITHCHOICE /OR/ ARITHREL ;1; (FCN ;3;)
(117,3) ARITHCHOICE <- ARITHREL , ARITHREL (FCN ;1;) (FCN ;3;)
(117,4) ARITHCHOICE <- ARITHCHOICE , /OR/ ARITHREL ;1; (FCN ;4;)

Examples of rules (43,4) and (43,5) are:

Does 6 come before 7?
Will the product of 2 and 4 come before the sum of 2 and 4?

AUXIL can be either an auxiliary or a modal verb. ARITHCHOICE is a

choicelist of arithmetic relations. Questions parsed by rule (43,9)

are common in elementary textbooks. Examples are:

Does 2 = or not = 4/2?
Is .6 =, <, or > 60%?

Questions like 'Is 2 equal to 4/2?' are parsed as LINK NP

ARITHREL NP because 'equal to' is TRANSL'd to '='. Rule (43,3) will

parse 'Does 2 equal 4/2?' To avoid ambiguity, this rule uses the

category AUXIL1 which includes 'does' and the modal verbs like 'can'

and 'will' but excludes the verb 'to be' which is a linking as well as

an auxiliary verb. The category VEQUAL in this rule includes the verbs

'equal' and 'name' and may easily be extended if any other verbs are

found to have the semantics of equal in this context. As we extend the

vocabulary, rules will be needed to parse verbs with different meanings

in this position, for example, 'Does 7 factor 14?'

Rules (43,33), (43,34) and (43,35) use modal verbs with the

verb 'to be'. One example of each follows:

126

(43,33) Will the sum of 2 and 3 be odd or even?
(43,34) Will 3 common multiples of 2 and 3 be less than 20?
(43,35) Will the product of 2 and 5 be <, , or = to the

sum of 2 and 5?

IV.41 CHOICELIST Questions

(43,15) Q <- INTER2 LINK ADJ PUNCHOICE CHOICELIST
(S ;5; (STS ;3;))

(43,16) Q <- INTER2 LINK COMPADJ PUNCHOICE CHOICELIST
(PICK (FCN ;3;) ;5;)

(43,17) Q <- INTER2 LINK /THE/ COMPADJ PUNCHOICE CHOICELIST
(PICK (FCN ;4;) ;6;)

(43,18) Q <- INTER2 LINK /THE/ ORDADJ COMPADJ PUNCHOICE CHOICELIST
(ORDFCN ;4; 1 (APP (FCN ;5;) ;7;)

(43,19) Q <- INTER2 LINK DET COMPADJ N PUNCHOICE CHOICELIST
(PICK (FCN ;4;) (I (STS ;5;) ;7;))

(43,20) Q <- INTER2 LINK DET COMPADJ ADP N PUNCHOICE CHOICELIST
(PICK (FCN ;4;) (I ;5; (I (STS ;6;) ;8;)))

(43,21) Q <- INTER2 MOD /BE/ SUBST/EXP PUNCHOICE CHOICELIST
(I ;4; ;6;)

(43,25) Q <- INTER2 LINK ARITHRELS PUNCHOICE CHOICELIST
(PICK ;3; ;5;)

(43,26) Q <- INTER2 LINK PREPHRASE PUNCHOICE CHOICELIST
(PICK ;3; ;5;)

(43,27) Q <- INTER2 LINK SPECPREPHRASE PUNCHOICE CHOICELIST
(PICK ;3; ;5;)

(47,1) INTER2 <- INTER
(47,2) INTER2 <- INTER /OF/ /THESE/
(47,3) INTER2 <- INTER /OF/ /THESE/ L/CNP3

(49,1) PUNCHOICE <-
(49,2) PUNCHOICE <-

PUNCHOICE <- ;

(49,4) PUNCHOICE <- DASHES

(50,1) DASHES <-
(50,2) DASHES <- DASHES -

Many questions in elementary textbooks use a multiple choice

format. In this section I will discuss the questions which contain the

127

answer choicelist as an integral part of the question. The category

INTER2 can have three forms as shown in the following examples:

(47,1) Which is less than 5 -- 4 or 6?
(47,2) Which of these is even: 2,3, or 4?
(47,3) Which of these numbers is even; 2,3, or 4?

I am treating all these forms as semantically equivalent. In order to

typecheck the NP in the third form with each of the answers, twice as

many rules would be needed in this portion of the grammar, Since an

error here seems to be unlikely, I have written the rules so that the

NP when present is simply ignored. The category PUNCHOICE allows for

a variety of punctuation.

(43,15) Which of these is even -- 2, 3, or 4?

(43,16) Which is larger, 2 or 5/2?
(43,17) Which is the largest: 5/2, 5/3, or 5/4?
(43,18) Which is the second largest: 5/2, 5/3, or 5/4?
(43,19) Which is the largest number: 2, 5, or 7?
(43,20) Which is the largest even number: 2, 5, or 7?
(43,21) Which of these will be even: the sum of 5 and 2,

the difference of 5 and 2, or the product of 5 and 2?
(43,25) Which of these is divisible by 3: 2, 4, 6, or 8?
(43,26) Which of these numbers is between 5/2 and 5 --

2, 4, or 6?
(43,27) Which of these is in lowest terms: 10/17, 10/15,

or 10/12?

The choicelists in the Q.-rules at the beginning of this section are an

integral part of the question; without the choicelist, the question

makes no sense. For example, one would not ask 'Which is even?'

without giving a choice of possible answers. Similarly, 'Which is the

largest number?' and 'which is the largest even number?' do not make

sense without a choicelist of answers. ?dote that these rules use the

category N. An FCN would never he used in this position (unless an

128

argument to the function were added to the rule). For example, 'Which

is the largest factor, 2 or 8?' and 'Which is the smallest denominator,

1/2 or 2/3?' are not legitimate questions, (The same questions with

'have' instead of 'to be' are legitimate and will be discussed in

Section 11.3.) Questions parsed by the Q1 -rules rather than the Q-

rules can be asked alone or followed by a choicelist. When there is a

choicelist, the question is evaluated independently of the choicelist

and then the answer is compared with the choices, An example parsed by

a Q1 -rule is 'How many even numbers are prime -- 1, 2, or 3?'

IV.42 Q1 -Rules

(43,37) Q <- QI ;1;

(43,38) Q <- Q1 PUNCHOICE CHOICELIST (PICK ;1; ;3;)

These rules allow the optional choicelist of answers for

certain questions. I have not included rules for the ordinary

multiple-choice question format where the answers are enumerated on

separate lines following the question using a letter or number to

identify each choice, but the same semantic functions can handle the

ordinary multiple-choice format.

IV.43 HOWMANY Questions Involving UNITs and NUNITs

(44,26) Q1 <- /HOWMANY/ LISTNAMESU AUXIL UNITS ALLV1
(CONVERT (UNT ;2;) ;4;)

(44,27) QI <- /THERE/ LINK /HOWMANY/ LISTNAMESU /IN/ UNITS
(CONVERT (UNT ;4;) ;6;)

(44,28) Q1 <- /HOWMANY/ LISTNAMESU INSIDE UNITS
(CONVERT (UNT ;2;) ;4;)

(44,29) QI <- /THERE/ LINK /HOWMANY/ LISTNAMESNU /IN/ EXP2
(CONVERTNUM (UNT ;4;) ;6;)

129

(44,30) Q1 <- /HOWMANY/ LISTNAMESNU INSIDE EXP2
(CONVERTNUM (UNT ;2;) ;4;)

(44,31) Q1 <- /HOWMANY/ LISTNAMESNU AUXIL EXP2 ALLV1
(CONVERTNUM (UNT ;2;) ;4;)

(45,1) INSIDE <- LINK /THERE/ /IN/
(45,2) INSIDE <- /IN/
(45,3) INSIDE <- LINK /IN/
(45,4) INSIDE <- LINK
(45,5) INSIDE <- AUX =
(45,6) INSIDE <- =
(45,7) INSIDE <- /SHOWNBY/

(77,1) ALLV <- =
(77,2) ALLV <- /NAME/
(77,3) ALLV <- /SHOW/
(77,4) ALLV <- /BE/

(78,1) ALLV1 <- ALLV
(78,2) ALLV1 <- /HAVE/
(78,3) ALLV1 <- /GIVE/

LISTNAMESU and LISTNAMESNU are lists (including the singleton

list) of the names of UNIT's and NUNIT's. For example,

There are how many yards, feet and inches in 125 inches?
There are how many ones, tens, and hundreds in 594?

The category ALLV1 used in rules (44,26) and (44,31) includes

several verbs, but the question has the same meaning whichever verb is

used

How many feet does 24 inches have (equal)?
How many tens does 236 have (show, give, name)?

The category INSIDE in rules (44,28) and (44,30) also parses

several constructions which have the same meaning in these contexts.

How many tens are there in 87?
How many inches in a foot?
How many tens are in 100?
How many feet is 36 inches?
How many pounds are equal to 2 tons?
How many teaspoons equal 1 tablespoon?
How many tens are shown by 850?

130

The semantic functions CONVERTNUM and CONVERT used for this

type of HOWMANY question convert the UNIT or NUNIT to the form or forms

specified by the LISTNAMESU or LISTNAMESNU.

IV.44 Other HOWMANY Questions

(44,32) Q1 <- /THERE/ LINK /HOWMANY/ L/CNP3
(LST (CARDINALITY ;4;))

(44,33) Q1 <- /HOWMANY/ L/CNP3 LINK /THERE/
(LST (CARDINALITY ;2;))

(44,34) Q1 <- /HOWMANY/ QU/I/HMNP LINK /THERE/ RELPOSPRONS
(LST (CARDINALITY (I ;2; ;5;)))

(44,35) Q1 <- /HOWMANY/ L/CNP3 LINK /THERE/ /OF/ NP
(LST (CARDINALITY (I ;2; ;6;)))

(44,36) Q1 <- /HOWMANY/ QU/I/HMNP LINK /THERE/ PREPHRASE
(LST (CARDINALITY (I ;2; ;5;)))

(44,37) Q1 <- /HOWMANY/ QU/I/HMNP LINK /THERE/ SPECPREPHRASE
UNDEFINED

(44,38) Q1 <- /HOWMANY/ L/CNP3 (LST (CARDINALITY ;2;))
(44,39) Q1 <- /HOWMANY/ QU/I/HMNP AUXIL NP =

UNDEFINED
(44,44) Q1 <- /HOWMANY/ QU/I/HMNP = NP

(LST (CARDINALITY (I ;2; (APP (FCN EQL) ;4;))))
(44,45) Q1 <- /HOWMANY/ QU/I/HMNP LINK SUBST/EXP

(LST (CARDINALITY (I ;2; ;4;)))

The category QU/I/HMNP was discussed in Section IV.30. The

semantic function for these HOWMANY questions

following are examples:

(44,32)

(44,33)

(44,34)

(44,35)
(44,36)

(44,37)

(44,38)

(44,39)

(44,44)
(44,45)

There are
How many
How many

How many
How many
How many

How many
How many

How many
How many

is CARDINALITY. The

how many even factors of 12?
even primes are there?
factors of 12 are there that are

divisible by 3?
factors are there of 3?
prime numbers are there between 10 and 20?
members of the set (1/2, 2/4, 3/8, 4/8)

are there in lowest terms?
factors
members

members
numbers

of 12?
of the set (2/4,

of the set (2/4,
between 5 and 10

131

3/6, 5/8)
does 1/2 equal?

3/6, 5/8) equal 1/2?
are prime?

IV.45 Interrogative Questions

The following in:Ecrogative questions as well as all the

HOWMANY questions in the preceding sections use 01-rules and therefore

can be followed by a choicelist of answers using rule (43,38).

I will list and give an example of each of the interrogative

question rules,

(44,1) Q1 <- INTER2 AUXIL NP AL D/ ;3;
What does 3-L5 equal?

(44,2) Q1 <- INTER QUfli/HMNP AUXIL NP ALLY (I ;2; ;4;)

Which whole number does 9/3 equalY

(44,3) Q1 <- INTER2 AUXIL1 NP SPECPREPHRASE (I ;3; ;4;)

What does 60% equal as a fraction?

(44,4) Q1 <- INTER QU /I /HMNP AUXIL1 NP SPECPREPHRASE UNDEFINED
What time does 1300 equal in 12-hour time?

(44,8) Q1 <- INTER2 LINK NP ;3;

What is the sum of 5 and 8?

(44,10) QI <- INTER QU/I/HMNP MOD /BE/ SUBST/EXP (I ;2; ;5;)

Which factors of 12 will be prime?

(44,11) QI <- INTER QU/I/HMNP LINK SUBST/EXP (I ;2; ;4;)

Which of the fraczi,7.ns 1/2, 5/4, and 6/8 are proper
fractioas?

(44,12) Q1 <- INTER QU/I/HMNP LLNK iTHE/ COMPADJ (MAXF (FCN ;5;) ;2;)

Which member of the set t2/3, 5/6, 7/10) is the largest?

(44,13) Q1 <- INTER QU/I/HMNP LINK /THE/ ORDAD. COMPADJ UNDEFINED
Which member of the set (2/3, 5/6, 7/101

f.s the second largest?

(44,14) Q1 <- INTER QU/I/HMNP LINK COMPADJ (MAXF (FCN ;4;) ;2;)

Which prime number is smallestl

(44,18) Q1 <- INTER EXP1 QU /i /HPcNP AUXIL NP ALLY UNDEFINED
Which 2 members of the set [2/4, 3/5, 4/8, 5/9)

does 1/2 equal?

(44,21) Q1 <- INTER EXI QU;I/HTINP NP UNDEFINED

132

Which 2 members of the set (2/4, 3/5, 4/8, 5/9)
equal 1/2?

(44,22) Q1 <- INTER EXPI QU/I/HMNP MOD /BE/ SUBST/EXP
(NMF ;2; (I ;3; ;6;))

Which 2 factors of 12 will be prime?

(44,23) Q1 <- INTER EXP1 QU/I/HMNP LINK SUBST/EXP
(NMF ;2; (I ;3; ;5;))

Which 4 numbers between 10 and 20 are prime?

IV.46 FCNHNP-Rules

(44,5) Q1 <- INTER FCNHNP AUXIL NP /HAVE/
(APP ;2; ;4;)

(44,6) Q1 <- INTER EXP1 FCNHNP AUXIL NP /HAVE/
(NMF ;2; (APP ;3; ;5;))

(44,41) Q1 <- /HOWMANY/ FCNHNP AUXIL NP /HAVE/
(LST (CARDINALITY (APP ;2; ;4;)))

(123,1) FCNHNP <- FCN (FCN ;1;)
(123,2) FCNHNP <- ADP FCN (FCNMK (FCN ;2;) ;1;)
(123,3) FCNHNP <- FCN RESTRICT (FCNMK (FCN ;1;) ;2;)
(123,4) FCNHNP <- ADP FCN RESTRICT.

(FCNMK (FCN ;2;) (I ;1; ;3;))

(119,1) RESTRICT <- RESTRICT RESTRICT1
(119,2) RESTRICT <- RESTRICT1

(120,1) RESTRICT1 <- PREPHRASE
(120,2) RESTRICTI <- RELPOSPRONS
(120,3) RESTRICT1 <- ARITHRELS

(I ;1; ;2;)

;1;

;1;

;1;

;1;

The noun phrase categories created for use with the verb 'to

have' were discussed in detail in Secion 11,3, This section and the

following sections give the rules for the various HNP categories and

the Q-rules which use the categories.

IV.47 HNPAS-Rules

(44,7) QI <- INTER QU/I/HMNP AUXIL HNPAS
(I ;2; ;4;)

(44,20) Q1 <- INTER EXP1 QU/I/HMNP AUXIL HNPAS

133

(NMF ;2; (I ;3; ;5;))

(44,40) Q1 <- /HOWMANY/ QU/I/HMNP AUXIL HNPAS
(LST (CARDINALITY (I ;2; ;4;)))

(128,1) HNPAS <- NP /HAVE/ /AS/ ANSGVHNP
(APP ;4; ;I;)

(128,2) HNPAS <- NP /HAVE/ /AS/ ANSGVHNP /OR/ /AS/ ANSGVHNP
(CHL (APP ;4; ;1;) (APP ;7; ;1;))

(128,3) HNPAS <- NP /HAVE/ 06/ ANSGVHNP /AND/ /AS/ ANSGVHNP
(I (APP ;4; ;1;) (APP ;7; ;1;))

(130,1) ANSGVHNP <- ANSGV1HNP
(130,2) ANSGVHNP <- DET ANSGV1HNP

;1;

;2;

(131,1) ANSGV1HNP <- FCNHNP ;1;

(131,2) ANSGViHNP <- /EITHER/ ANSGVHNP /OR/ ANSGVHNP (FCNU ;2; ;4;)

(131,3) ANSGV1HNP <- /NEITHER/ ANSGVHNP /NOR/ ANSGVHNP (FCNNOR ;2; ;4;)

(131,4) ANSGV1HNP <- ANSGVHNP /AND/ ANSGVHNP (FCNI ;1; ;3;)

IV.48 COMP1HNP and COMP2HNP-Rules

(43,8) Q <- AUXIL NP /HAVE/ COMP2HNP
(43,24) Q <- INTER2 /HAVE/ COMPiHNP PUNCHOICE CHOICELIST
(44,17) Q1 <- INTER QU/I/HMNP /HAVE/ COMP1HNP
(44,25) Q1 <- INTER EXP1 QU/I/HMNP /HAVE/ COMP1HNP
(44,43) 01 <- /HOWMANY/ QU/I/HMNP /HAVE/ COMP1HNP
(132,1) C0MP2HNP <- COMPADJ /OR/ COMPADj FCNHNP /THAN/ NP
(132,2) C0MP2HNP <- COMPADJ /OR/. COMPADJ FCNHNP /THAN/ NP /HAVE/
(132,3) C0MP2HNP <- ARITHREL /OR/ ARITHREL EXP FCNHNP
(132,4) COMP2HNP <- COMPADJ FCNHNP /OR/ COMPADJ FCNHNP /THAN/ NP
(132,5) COMP2HNP <- COMPAD.: FCNHNP /0k1 COMPADJ FCNHNP /THAN/ NP

/HAVE/

(132,6) COMP2HNP <- DET CCMPADJ /01Ri COMPADJ FCNHNP /THAN/ NP
(132,7) COMP2HNP <- DET COMPADJ /OR/ COMPADJ FCNHNP /THAN/ NP /HAVE/
(132,8) COMP2HNP <- DET COMPADJ /OR/ DET COMPADJ FCNHNP /THAN/ NP
(132,9) COMP2HNP <- DET COMPAD2; Oki DEr COMPADJ FCNHNP /THAN/ NP
(132,10) C0MP2HNP <- DET COMPADJ FCNENP /OR/ DET COMPADJ FCNHNP /THAN/

NP
(132,11) COMP2HNP <- DET COMPADJ FCNHNP /OR/ DET COMPADJ FCNHNP /THAN/

NP /HAVE/
(132,12) COP2HNP <- DET COMPADJ FCNHNP /OR/ COMPADJ FCNHNP /THAN/ NP
(132,13) COMP2HNP <- DET COMPADJ FCNHNP /OR/ COMPADJ FCNHNP /THAN/ NP
(132,14) C0MT2HNP <- COMP1HNP

(133,1) COMP1HNP <- COMPADJ FCNHNP /THAN/ NP
(133,2) COMP1HNP <- COMPADJ FCNHNP /THAN/ NP /HAVE/
(133,3) COMP1HNP <- ARITHREL EXP FCNHNP

134

The semantic functions for these rules are currently UNDEFINED.

The rules have been written with all the elements fully specified.

When the semantics for them is carefully studied, I am sure that the

rules can be compressed, The difference between COMP1HNP's and

COMP2HNP's is that the former contains only one COMPADJ and the latter

has a choice of two. All the contexts where COMP2HNP appears can have

a COMY1HNP instead. (This is accomplished by rule (132,14).) Using the

question format in rule (43,8), I will give one example of each of the

COMPHNP's. Note that in many cases the final /HAVE/ is optional.

(132,1) & (132,2) Does 6 have more or less factors than
12 (has)?

(132,3) Does 6 have more or less than 3 factors?
(132,4) & (132,5) Does 6 have more factors or less factors

than 12 (has)?
(132,6) & (132,7) Does 1/2 have a larger or smaller

denominator than 1/3 (has)?
(132,8) & 132,9) Does 1/2 have a larger or a smaller

denominator than 1/3 (has)?
(132,10) & (132,11) Does 1/2 have a larger denominator or a

smaller denominator than 1/3 (has)?
(132,12) & (132,13) Does 2/3 have a larger denominator or

larger numerator than 1/4 (has)?
(133,1) & (133,2) Does 6 have more even factors than 12 (has)?
(133,3) Does any prime number have more than 2 factors?

IV.49 HAVENPF-Rules

(43,7) Q <- AUXIL CHOICELIST /HAVE/ HAVENPF
(PICK ;4; ;2;)

(44,15) Q1 <- INTER QU/I/HMNP /HAVE/ HAVENPF
(APP ;4; ;2;)

(121,1) HAVENPF <- /THE/ ORDADJ COMPADJ FCNHNP
(HORDFCN ;2; ;3; ;4;)

(121,2) HAVENPF <- /THE/ COMPADJ FCNHNP
(HORDFCN 1 ;2; ;3;)

135

IV.50 HAVENP-Rules

(43,6) Q <- AUXIL NP /HAVE/ HAVENP
;2; ;4;)

(43,23) Q <- INTER2 /HAVE/ HAVENP PUNCHOICE CHOICELIST
(PICK ;3; ;5;)

(44,16) Q1 <- INTER QU/I/HMNP /HAVE/ HAVENP
(I ;2; ;4;)

(44,24) Q1 <- INTER EXP1 QU/I/HMNP /HAVE/ HAVENP
(NMF ;2; (I ;3; ;50)

(44,42) Q1 <- /HOWMANY/ QU/I/HMNP /HAVE/ HAVENP
(LST (CARDINALITY (I ;2; ;40))

(122,1) HAVENP <- EXTHNP
(122,2) HAVENP <- UNVHNP
(122,3) HAVENP <- EXP1 FCNHNP
(122,4) HAVENP <- ANSHNP
(122,5) HAVENP <- HAVENPCHOICE
(122,6) HAVENP <- LISTOFHAVENP
(122,7) HAVENP <- /NEITHER/ HAVENP /NOR// HAVENP
(122,8) HAVENP <- /EITHER/ HAVENP /OR/ HAVENP

1;

;1;

(EXPHNP ;1; ;2;)

;1;

;1;

;1;

(NOR ;2; ;4;)
(U ;2; ;4;)

(129,1) ANSHNP <- NP /AS/ ANSGVHNP (EXTHNP ;3; ;1;)

(129,2) ANSHNP <- NP /AS/ ANSGVHNP /OR/ /AS/ ANSGVHNP
(CHL (EXTHNP ;3; ;1;) (EXTHNP ;6; ;1;))

(129,3) ANSHNP <- NP /AS/ ANSGVHNP /AND/ /AS/ ANSGVHNP
(CHL (EXTHNP ;3; ;1;) (EXTHNP ;6; ;1;))

(129,4) ANSHNP <- ANSGVHNP EXP (EXTHNP ;1; ;2;)

(129,5) ANSHNP <- ANSGVHNP /OF/ EXP (EXTHNP ;1; ;3;)

(129,6) ANSHNP <- /THE/ EXP1 FCNHNP EXP UNDEFINED
(129,7) ANSHNP <- EXP1 FCNHNP EXP UNDEFINED

(125,1) EXTHNP <- FCNHNP (EXTHNP ;1; (STS UNIV))
(125,'4) EXTHNP <- FCNHNP /EXCEPT/ NP (EXTHNP ;1; (C ;3;))

(125,3) EXTHNP <- EXTHNPQU FCNHNP (EXTHNP ;2; (STS UNIV))

(125,4) EXTHNP <- EXTHNPQU FCNHNP /EXCEPT/ NP (EXTHNP ;2; (C ;4;))

(124,1) EXTHNPQU <- /ANY/
(124,2) EXTHNPQU <- /SOME/
(124,3) EXTHNPQU <- /A/

(127,1) UNVHNP <- UNVHNPQU FCN (UNVHNP (FCN ;20 (STS UNIV))
(127,2) UNVHNP <- UN'qINPQU FCN RESTRICT

(UNVHNP (FCN ;2;) ;3;)

(127,3) UNVHNP <- UNVHNPQU ADP FCN
(UNVHNP (FCN ;3;) ;2;)

(127,4) UNVHNP <- UNVHNPQU ADP FCN RESTRICT
(UNVHNP (FCN ;3 ;) (I ;2; ;4;))

(127,5) UNVHNP <- UNVHNPQU FCN /EXCEPT/ NP
(UNVHNPXCT (FCN ;2;) (STS UNIV) ;4;)

136

(127,6) UNVHNP <- UNVHNPQU FCN RESTRICT /EXCEPT/ NP
(UNVHNPXCT (FCN ;2;) ;3; ;5;)

(127,7) UNVHNP <- UNVHNPQU ADP FCN /EXCEPT/ NP
(UNVHNPXCT (FCN ;3;) ;2; ;5;)

(127,8) UNVHNP <- UNVHNPQU ADP FCN RESTRICT /EXCEPT/ NP
(UNVHNPXCT (FCN ;3;) (I ;2; ;4;) ;6;)

(126,1) UNVHNPQU <- /ALL/
(126,2) UNVHNPQU <- /ONLY/

137

Appendix I

Examples of Questions and their Answers

The following are examples of questions accepted by the

CONSTRUCT program. The format includes (a) the original sentence, (b)

the dictionary classification of the sentence, (c) the semantic

construction that, when evaluated, gives the meaning of the sentence,

and (d) the evaluation of the sentence, "QUS" means that the sentence

was a question, "TV" means "truth-value", "NIL" means "false", "T"

means "true", "LST" means an explicit list of elements in a set, and

"CHL" means that the question was a compound question with several

answers.

(la) Is 2 a factor of 4?
(b) link integer /a/ fcn /of/ integer ?
(c) (QUS (S (LST 2) (APP (FCN @FACTOR) (LST 4))))
(d) (QUS (TV T))

(2a) Does 4 have a factor of 2?
(b) aux integer /have/ /a/ fcn /of/ integer ?
(c) (QUS (S (LST 4) (EXTHNP (FCN @FACTOR) (LST 2))))
(d) (QUS (TV T))

(3a) Are there any common factors of 4 and 12 that are greater than 4?
(b) link /there/ /any/ 2fcn /of/ integer /and/

integer relpron link arithrel integer ?
(c) (QUS (EXIST (I (APP (FCN @COMMONFACTOR)

(LST (LST 4) (LST 12))) (APP (FCN @GT) (LST 4)))))
(d) (QUS (TV NIL))

(4a) Are there any even prime numbers that are greater than 2?
(b) link /there/ /any/ adj adj n relpron link arithrel integer ?
(c) (QUS (EXIST (I (I (1 (STS @EVEN) (STS @PRIME))

(STS @NUMBER)) (APP (FCN @GT) (LST 2)))))
(d) (QUS (TV NIL))

138

(5a) Does the least common multiple of 4 and 5 come before
the least common multiple of 4 and 12?

(b) aux /the/ 2fcn /of/ integer /and/ integer /come/
/before/ /the/ 2f en /of/ integer /and/ integer ?

(c) (QUS (S (APP (FCN @LCM) (LST (LST 4) (LST 5)))
(BEFORE (APP (FCN @LCM) (LST (LST 4) (LST 12))))))

(d) (QUS (TV NIL))

(6a) Does 12 have any factors that are greater than 12?
(b) aux integer /have/ /any/ fcn relpron link arithrel integer ?
(c) (QUS (S (LST 12) (EXTHNP (FCNMK (FCN @FACTOR)

(APP (FCN @GT) (LST 12))) (STS UNIV))))
(d) (QUS (TV NIL))

(7a) Are all the factors of 12 divisible by 2?
(b) link /all/ /the/ fcn /of/ integer arithrel integer ?
(c) (QUS (S (APP (FCN @FACTOR) (LST 12))

(APP (FCN @DIVISIBLE) (LST 2))))
(d) (QUS (TV NIL))

(8a) Is the largest factor of 12 divisible by all
the odd factors of 12?

(b) link /the/ compadj fcn /of/ integer arithrel /all/
/the/ adj fcn /of/ integer ?

(c) (QUS (S (MAXF (FCN @GTT) (APP (FCN @FACTOR) (LST 12)))
(APP (FCN @DIVISIBLE) (I (STS @ODD)
(APP (FCN @FACTOR) (LST 12))))))

(d) (QUS (TV T))

(9a) Are 2 factors of 12 prime numbers that are odd?
(b) link integer fcn /of/ integer adj n relpron link adj ?
(c) (QUS (S (LST (CARDINALITY (I (APP (FCN @FACTOR) (LST 12))

(I (I (STS @PRIME) (STS @NUMBER)) (STS @ODD)))))
(APP (FCN @EQL) (LST 2))))

(d) (QUS (TV NIL))

[Note: 1 is not the factor of any number according to
the definition that we have implemented.]

(10a) Except for 4, what are the common factors of 4 and 12?
(b) /except/ integer , inter link /the/ 2fcn /of/

integer /and/ integer ?
(c) (QUS (SD (APP (FCN @COMMONFACTOR)

(LST (LST 4) (LST 12))) (LST 4)))

(d) (QUS (LST 2))

139

(11a) Which of the numbers 5, 16, 23, and 54 are even and
divisible by 4?

(b) inter /of/ /the/ apposn integer , integer , integer , /and/

integer link adj /and/ arithrel integer ?
(c) (QUS (I (I (STS @NUMBER)

(CHL (LST 5) (LST 16) (LST 23) (LST 54)))
(I (STS @EVEN) (APP (FCN @DIVISIBLE) (LST 4)))))

(d) (QUS (CHL (LST) (LST 16) (LST) (LST)))

(12a) Which of the factors of 12 have only even factors that are
greater than 4?

(b) inter /of/ /the/ fcn /of/ integer /have/ /only/ adj fcn relpron
link arithrel integer ?

(c) (QUS (I (APP (FCN @FACTOR) (LST 12))
(UNVIINP (FCN @FACTOR) (I (STS @EVEN)

(APP (FCN @GT) (LST 4))))))
(d) (QUS (LST))

(13a) Is 3+2 less than, greater than, or equal to 2+3?
(b) aux integer + integer arithrel , arithrel , /or/ arithrel

integer + integer ?
(c) (QUS (PICKFCN (CHL (FCN @LT) (FCN @GT) (FCN @EQL))

(LST (ADDER 3 2) (ADDER 2 3))))
(d) (QUS (LST (FCN EQL)))

(14a) Which of these will be even: 2+2, 2+3, 3+2, 3+3 or 3+1?
(b) inter /of/ /these/ mod /be/ adj : integer + integer ,

integer + integer, integer + integer /or/ integer + integer ?
(c) (QUS (I (STS @EVEN)

(CHL (LST (ADDER 2 2)) (LST (ADDER 2 3))
(LST (ADDER 3 2)) (LST (ADDER 3 3)) (LST (ADDER 3 1)))))

(d) (QUS (CHL (LST 4) (LST) (LST) (LST 6) (LST 4)))

(15a) Which even number Is a prime number -- 2 or 4?
(b) inter adj n link /a/ adj n - integer /or/ integer ?
(c) (QUS (PICK (I (I (STS @EVEN) (STS @NUMBER))

(I (STS @PRIME) (STS @NUMBER))) (CHL (LST 2) (LST 4))))
(d) (QUS (LST 2))

(16a) What is the least common multiple of the
product of 2 and 5 and the product of 2 and 6?

(b) inter link /the/ 2fcn /of/ /the/ 2fcn /of/ integer
/and/ integer /and/ /the/ 2fcn /of/ integer /and/ integer ?

140

(c) (QUS (S (APP (FCN @SUM) (LST (LST 5) (LST 2)))

(I (APP (FCN @LT) (APP (FCN @PRODUCT) (LST (LST 5)
(LST 2)))) (APP (FCN @GT) (APP (FCN @DIFFER)
(LST (LST 5) (LST 2)))))))

(d) (QUS (LST 60))

(17a) IS the sum of 5 and 2 less than the product of 5 and 2
but greater than the difference of 5 and 2?

(b) link /the/ 2fcn /of/ integer /and/ integer arithrel
/the/ 2fcn /of/ integer /and/ integer /and/ arithrel /the/
2fcn /of/ integer /and/ integer ?

(c) (QUS (S (APP (FCN @SUM) (LST (LST 5) (LST 2)))
(I (APP (FCN @LT) (APP (FCN @PRODUCT)
(LST (LST 5) (LST 2)))) (APP (FCN @GT)
(APP (FCN @DIFFER) (LST (LST 5) (LST 2)))))))

(d) (QUS (TV T))

(18a) Which of the numbers that are between 37 and 48 and are odd
does 86 have as factors?

(b) inter /of/ /the/ n relpron link /between/
integer /and/ integer /and/ link adj
aux integer /have/ /as/ fcn ?

(c) (QUS (I (I (STS @NUMBER)
(I (BETWEEN (LST 37) (LST 48)) (STS @ODD)))
(APP (FCN @FACTOR) (LST 86))))

(d) (QUS (LST 43))

(19a) Which of the factors of 36 are even and not between 1 and 36?
(b) inter /of/ /the/ fcn /of/ integer link adj /and/

/not/ /between/ integer /and/ integer ?
(c) (QUS (I (APP (FCN @FACTOR) (LST 36)) (I (STS @EVEN)

(C (BETWEEN (LST 1) (LST 36))))))
(d) (QUS (LST 36))

(20a) Which even number is a factor of 12 and a multiple of 3?
(b) inter adj n link /a/ fcn /of/ integer /and/ /a/ fcn /of/ integer ?
(c) (QUS (I (I (STS @EVEN) (STS @NUMBER))

(I (APP (FCN @FACTOR) (LSI 12))
(APP (FCN @MULTIPLE) (LST 3)))))

(d) (QUS (LST 12 6))

(21a) How many factors of 4 are there that are also multiples of 4?
(b) /howmany/ fcn /of/ integer link /there/

relpron link fen /of/ integer ?

141

(c) (QUS (LST (CARDINALITY (I (APP (FCN @FACTOR) (LST 4))
(APP (FCN @MULTIPLE) (LST 4))))))

(d) (QUS (LST 1))

(22a) Which number does 4 have both as a factor and as a multiple?
(b) inter n aux integer /have/ /as/ /a/ fcn /and/ /as/ /a/ fcn ?
(c) (QUS (I (STS @NUMBER) (I (APP (FCN @FACTOR) (LST 4))

(APP (FCN @MULTIPLE) (LST 4)))))
(d) (QUS (LST 4))

(23a) How many even numbers between 3 and 50 have 7 as a factor?
(b) /howmany/ adj n /between/ integer ,and/ integer /have/

integer /as/ /a/ fcn ?
(c) (QUS (LST (CARDINALITY (I (1 (STS @EVEN)

(I (STS @NUMBER) (BETWEEN (LST 3) (LST 50))))
(EXTHNP (FCN @FACTOR) (LST 7))))))

(d) (QUS (LST 3))

(24a) What are the even factors of 12 that are multiples of 4?
(b) inter link /the/ adj fors /of/ integer

relpron link fcn /of/ integer ?

(c) (QUS (I (I (STS @EVEN) (APP CNN @FACTOR) (LST 12)))
(APP (FCN @MULTIPLE) (LST 4))))

(d) (QUS (LST 12 4))

(25a) What is 7 diwided into 56?
(b) inter link in.:eger /diidedinto/ integer ?
(c) (QUS (LST (DIV 56 7 ;))

(d) (QUS (LST (MXD 8 0)))

(26a) What is 56 divided by 7?
(b) inter link integer /dividedby/ intege.c.
(c) (QUS (LST (DIV 56 7)))
(d) (QUS (LST (MXD 8 0)))

(27a) How many even numbers are prime?
(b) /howmany/ adj n link adj ?

(c) (QUS (LST (CARDINALITY (I (I (STS @EVEN) (STS @NUMBER))
(STS @PRIME)))))

(d) (QUS (LST 1))

INoce: There is another semantically equivalent
derivation in which 'prime' is parsed as a noun,]

142

(28a) Give the factors of 2, the factors of 3, and the factors of 4!
(b) /give/ /the/ fcn /of/ integer , /the/ fcn /of/ integer ,

/and/ /the/ fcn /of/ integer !

(c) (CMD (CHL (APP (FGN @FACTOR) (LST 2)) (APP (FCN @FACTOR) (LST 3))
(APP (FCN @FACTOR) (LST 4))))

(d) (CMD (CHL (LST 2) (LST 3) (LST 4 2)))

(29a) Give the numbers that are between 2 and 6 that are less than 4!
(b) /give/ /the/ n relpron link /between/ integer /and/ integer

relpron link arithrel integer !

(c) (CMD (I (I (STS @NUMBER) (BETWEEN (LST 2) (LST 6)))
(APP (FCN @LT) (LST 4))))

(d) (CMD (LST 3))

(30a) Give the factors of 12 and the factors of 15 that are prime
numbers!

(b) /give/ /the/ fcn /of/ integer /and/ /the/ fcn /of/ integer relpron
link adj n !

(c) (CMD (CHL (APP (FCN @FACTOR) (LST 12)) (I (APP (FCN @FACTOR)
(LST 15)) (I (STS @PRIME) (STS @NUMBER)))))

(d) (CMD (CHL (LST 12 6 4 3 2) (LST 5 3)))

[Note: sentence (30) is genuinely ambiguous...1

(c') (CMD (I (CHL (APP (FCN @FACTOR) (LST 12)) (APP (FCN @FACTOR)
(LST 15))) (I (STS @PRIME) (STS @NUMBER))))

(d') (CMD (CHL (LST 3 2) (LST 5 3)))

(31a) Is the largest factor of 5 even?
(b) link /the/ compadj fcn /of/ integer adj ?

(c) (QUS (S (MAXF (FCN @GTT) (APP (FCN @FACTOR) (LST 5)))
(STS @EVEN)))

(d) (QUS (TV NIL))

(32a) Does 12 have a factor that is both even and prime?
(b) aux integer /have/ /a/ fcn relpron link adj /and/ adj ?
(c) (QUS (S (LST 12) (EXTHNP (FCNMK (FCN @FACTOR) (I (STS @EVEN)

(STS @PRIME))) (STS UNTO)))
(d) (QUS (TV T))

(33a) Is the largest common factor of 20 and 24 odd or even?
(b) link /the/ compadj 2fcn /of/ integer /and/ integer adj /or/ adj ?
(c) (QUS (S (MAXF (FCN @GTT) (APP (FCN @COMMONFACTOR) (LST (LST 20)

(LST 24)))) (CHL (STS @ODD) (STS @EVEN))))
(d) (QUS (CHL (TV NIL) (TV T)))

143

(.34a) Will the product of 2 and 4 come before the sum of 2 and 4?
(b) mod /the/ 2fcn /of/ integer /and/ integer /come/ /before/

/the/ 2fcn /of/ integer /and/ integer ?
(c) (QUS (S (APP (FCN @PRODUCT) (LST .LST 2) (LST 4)))

(BEFORE (APE (FUN @SUM) (Lsr (LST 2) (LST 4))))))
(d) (QUS (TV NIL))

(35a) Is 4 a common multiple of 2 and 4?
(b) link integer /a/ 2fcn jof/ integer /and/ integer ?
(c) (QUS (S (LST 4) (APP (FCN @COMMONMULTIPLE) (LST (LST 2)

(LST 4)))))
(d) (QUS (TV T))

(36a) Which of these will be even: the sum of 5 and 2,
the difference of 5 and 2 , or the product of 5 and 2?

(b) inter /of/ /these/ mod /be/ adj : /the/ 2fcn /of/ integer /and/
integer , /the/ 2fcn /of/ integer /and/ integer , /or/

/the/ 2fcn /of/ integer. /and/ integer ?
(c) (QUS (I (STS @EVEN) (CHL (APP (FCN @SUM) (LST (LST 5) (LST 2)))

(APP (FCN @DIFFER) (LST (LST 5) (LST 2))) (APP (FCN @PRODUCT)
(LST (LST 5) (LST 2))))))

(d) (QUS (CHL (LST) (LST) (LST 10)))

(37a) How many prime numbers are there beween 10 and 20?
(b) /howmany/ adj n link /there/ /between/ integer /and/ integer ?
(c) (QUS (LST (CARDINALITY (I (I (STS MiME) (STS @NUMBER))

(BETWEEN (LST 10) (LST 20))))))
(d) (Q1J ;!77 z0J

(38a) How many numbers between 5 and 10 are odd numbers?
(b) /howmany/ n /between/ integer /and/ integer link adj n ?
(c) (QUS ;LST (CARDINALITi (I (1 (ST'S @NUMBER) (BETWEEN (LST 5)

(LST 10))) (1 (STS @3DD) (STS @NUMBER))))))
(d) (QUS (LST 2))

(39a) What does 3 5 equal?
(b) inter aux integer inteciar ?

(c) (QUS (LST (ADDER 3 5)))
(d) (QUS (LST 8))

(40a) Which 4 numbers between 10 and 20 are prime numbers?
(b) inter integer a /between/ integer /and/ integer link adj n ?

144

(c) (QUS (NMF 4 (I (I (STS @NUMBER) (BETWEEN (LST 10) (LST 20)))
(I (STS @PRIME) (STS @NUMBER)))))

(d) (QUS (LST 19 17 13 11))

(41a) How many even factors that are between 10 and 50 does 100 have?
(b) /howmany/ adj fcn relpron link /between/ integer /and/ integer

aux integer /have/ ?
(c) (QUS (LST (CARDINALITY (APP (FCNMK (FCN @FACTOR) (I (STS @EVEN)

(BETWEEN (LST 10) (LST 50)))) (LST 100)))))
(d) (QUS (LST 1))

(42a) Does 12 have 6 as a factor or as a multiple?
(b) aux integer /have/ integer /as/ /a/ fcn /or/ /as/ /a/ fcn ?
(c) (QUS (S (LST 12) (CHL (EXTHNP (FCN @FACTOR) (LST 6)) (EXTHNP

(FCN @MULTIPLE) (LST 6)))))
(d) (QUS (CHL (TV T) (TV NIL)))

(43a) Does 12 have 12 as a factor and also as a multiple?
(b) aux integer /have/ integer /as/ /a/ fcn /and/ /as/ /a/ fcn ?
(c) (QUS (S (LST 12) (CHL (EXTHNP (FCN @FACTOR) (LST 12))

(EXTHNP (FCN @MULTIPLE) (LST 12)))))
(d) (QUS (CHL (TV T) (TV T)))

(44a) Does 6 have any factors that are also factors of 3?
(b) aux integer /have/ /any/ fcn relpron link fcn /of/ integer ?
(c) (QUS (S (LST 6) (EXTHNP (FCNMK (FCN @FACTOR) (APP (FCN @FACTOR)

(LST 3))) (STS UNIV))))
(d) (QUS (TV T))

(45a) Which factor of 6 is also a factor of 3?
(b) inter fcn /of/ integer link /a/ fcn /of/ integer ?
(c) (QUS (I (APP (FCN @FACTOR) (LST 6)) (APP (FCN @FACTOR) (LST 3))))
(d) (QUS (LST 3))

(46a) Does 6 have any factors that are also multiples of 6?
(b) aux integer /have/ /any/ fcn relpron link fcn /of/ integer ?
(c) (QUS (S (LST 6) (EXTHNP (FCNMK (FCN @FACTOR) (APP (FCN @MULTIPLE)

(LST 6))) (STS UNIV))))
(d) (QUS (TV T))

(47a) Are there any factors of 6 that are also multiples of 6?
(b) link /there/ /any/ fcn /of/ integer relpron link

fcn /of/ integer ?

145

(c) (QUS (EXIST (I (APP (FCN @FACTOR) (LST 6)) (APP (FCN @MULTIPLE)
(LST 6)))))

(d) (QUS (TV T))

(48a) Does 10 have any even factors that are between 2 and 10?
(b) aux integer /have/ /any/ adj fcn relpron link /between/

integer /and/ integer
(c) (QUS (S (LST 10) (EXTHNP (FCNMK kFON @FACTOR) (I (STS @EVEN)

(BETWEEN (LST 2) (Lsr 10)))) t.sts UNIV))))
(d) (QUS (TV NIL))

(49a) Is the factor of 10 that is between 2 and 10 odd or even?
(b) link /the/ rcn /of/ integer relpIan link /between/

incegec /arid/ integer adj idr/ adj
(c) (QUS (S (I (APP (FCN @FACTOR) (LST 10))

(BETWEEN (LST 2) (LST 10))) (CHL (STS @ODD) (STS @EVEN))))
(d) (QUS (CHL (TV T) (TV NIL)))

(50a) Does 12 have any factors that are greater than 6 that are odd?
(b) aux integer /have/ /any/ fcn relpron link arithrei integer relpron

link adj ?

(c) (QUS (S (LST 12) (EXTHNP (FCNMK (FCN @FACTOR) (I (APP (FCN @GT)
(LST 6)) (STS @ODD))) (STS UNIV))))

(d) (QUS (TV NIL))

146

adjectives 29, 43
agreement 17

ambiguity 22, 64, 111
arithmetic expressions 82, 85
arithmetic relations 30

clarity 14

commands 107

CONSTRUCT 2, 51

constructive sets 5

control structure 13, 45

data structures 35

declaratives 109

DICTIONARY 2

Flementary mathematics 5

evaluation techniques 35

evaluator 2

existential quantifier 47

extendability 32

flexibility 32

grammar 2, 22, 59
grammar writing 61

interaction 14

lexical categories 53

Index

147

lists 78, 98

measurements 88

models of semantics 27

multiple categories 53

multiple choice format 127

noun phrases 80

nouns 29

pattern recognition 28, 58
prepositional phrases 16

prepositions 91

primitive semantic functions 11

probabilistic grammars 66

programming languages 34

question-answering system 2

recursive evaluation 13

restructuring 44

scanner 2, 53
semanti.: categories 17

semantic construction 2,

semantic function 2

semantics 10, 14, 17, 22,
subject matter 4

syntax 10, 14, 17, 22, 28

12,

60

72

theorem prover 37

transformational semantic
functions 6, 13

transformations 38

TRANSL 2, 57

unbounded branching 43, 75

UNITs 87

universal quantifier 49

vocabulary 8

148

References

1. Black, Fischer, A deductive question-answering system, Semantic
Information Processing, Marvin Minsky (Ed.), MIT
Press, Cambridge, Massachusetts, 1968, pp. 354-401.

2. Bobrow, Daniel G., Natural language input for a computer problem
solving system, Semantic Information Processing, Marvin
Minsky (Ed.), MIT Press, Cambridge, Massachusetts, 1968, pp.
146-226.

3. Chomsky, N., A transformational approach to syntax, The
Structure of Language, J.A. Fodor and J.J. Katz (Eds.),
Prentice-Hall, Englewood Cliffs, New Jersey, 1964,

4. Colby, Kenneth Mark, and Enea, Horace, Idiolectic language anal-
ysis for understanding doctor-patient dialogues, Proceedings
of the Third International Joint Conference on Artificial
Intelligence, Stanford, Calif., (1973), pp. 278-284.

5. Craig, J.A., Berezner, S.C., Carney, H,C., and Longyear,
C.R,, DEACON: Direct English Access and Control, AFIPS
Conference Proceedings, 29, (1966), pp. 365-380.

6. Fillmore, Charles J,, The case for case, Universals in

Linguistic Theory, E. Bach and A. Harms (Eds,), Holt, Rinehart,
and Winston, New York, 1968, p. 1-88,

7. Gries, David, Compiler Construction for Digital Computers,
John Wiley and Sons, New York, 1971.

8. Katz, Jerrold J., Recent issues in semantic theory, Foundations of
Language 3, (1968), pp. 124-194.

9. Lindsay, Robert K., Inferential memory as the basis of machines
which understand natural language, Computers and

Thought, Edward A. Feigenbaum and Julian Feldman (Eds.),

McGraw-Hill, New York, 1963, pp. 217-233.

149

10. Minsky, Marvin, Introduction to Semantic Information Processing,
MIT Press, Cambridge, Massachusetts, 1968.

11. Montague, Richard, English as a formal language, Linguaggl nella
Societa e nella Tecnica (Language in Society and the Technical
World), Milan, 1970.

12. Palma, J., Making computers understand natural language, Artifi-
cial Intelligence and Heuristic Programming, N. Findler and B.
eltzer (Eds.), Edinburgh University Press, 1971, pp. 199-244.

13. Postal, Paul M., Limitations of phrase structure grammars, The
Structure of Language, J. A. Fodor and J. J. Katz (Eds.),
Prentice-Hall, Englewood Cliffs, New Jersey, 1964, pp. 137-151.

14. Quillian, M. Ross, Semantic memory, Semantic Information Pro-
cessing, Marvin Minsky (Ed.), MIT Press, Cambridge, Cambridge,
Massachusetts, 1968, pp. 227-270.

15. Quillian, M. Ross, The teachable language comprehender:
A simulation program and theory of language, Communications of
the Association for Computing Machinery, Vol. 12 (1969), No. 8,
pp. 459-475.

16. Raphael, Bertram, SIR: A computer program for semantic inform-
ation retrieval, Semantic Information Processing, Marvin Minsky
(Ed.), MIT Press, Cambridge, Massachusetts, 1968, pp. 33-145.

17. Rawson, Freeman L. III, Set-theoretical semantics for elementary
mathematical language, Doctoral Dissertation, Stanford Univer-
sity, 1973. Also Technical Report 220, Institute for

Mathematical Studies in the Social Sciences, Stanford Univ-
ersity, 1973.

18. Sager, Naomi, Syntactic formatting of science information,
AFIPS Conference Proceedings, 41, (1972), pp. 791-800.

150

19. Sandewall, Eric, Formal methods in the design of question-
answering systems, Artificial Intelligence 2, (1971), pp. 129-
145.

20. Schank, Roger C. and Tesler, Lawrence G., A conceptual parser for
natural language, Proceedings of the International Joint
Conference on Artificial Intelligence, Washington, D.C.,.

(1969), pp. 569-578.

21. Smith, Robert L. Jr., The syntax and semantics of ERICA.
Doctoral dissertation, Stanford University, 1972. Also
Technical Report 185, Institute for Mathematical Studies in the
Social Sciences, Stanford University, 1972.

22. Smith, Robert L. Jr., forthcoming.

23. Suppes, Patrick, Sets and Numbers, L. W. Singer Company, New
York, 1969.

24. Thompson, Frederick B., English for the Computer, AFIPS
Conference Proceedings, 29, (1966), pp. 349-356.

25. Weizenbaum, Joseph, ELIZA -- A computer program for the study of
natural language 'communication between man and machine,
Communications of the Association for Computing Machinery, Vol.
9(1966), No. 1, pp. 36-45.

26. Winograd, Terry, Procedures as a representation for data in
a computer program for understanding natural language, Doctoral
dissertation, Massachusetts Institute of Technology, 1971.

27. Woods, W. A., Procedural semantics for a question-
answering machine, AFIPS Conference Proceedings, (1968), pp.
457-471.

28. Woods, W.A., Transition network grammars for natural language
analysis, Communications of the Association for

Computing Machinery, Vol. 13 (1970), No. 10, pp. 591-606.

151

(Continued (rein inside front cover)

165 L. J. Hubert. A formal model for the perceptual processing of geometric configurations. February 19, 1971. (A statistical method for
investigating the perceptual confusions among geometric configurations. Journal of Mathematical Psychology, 1972, 9, 389-403.)

166 J. F. Juola, I. S. Fisch ler, C. T. Wood, and R. C. Atkinson. Recognition time for information stored in long-term memory. (Perception and

Psychophysics, 1971, 10, 8-14.)
167 R. L. Klatzky and R. C. Atkinson. Specialization of the cerebral hemispheres in scanning for information in short-term memory. (Perception

and Psychophysics, 1971, 10, 335-338.)
168 J. D. Fletcher and R. C. Atkinson. An evaluation of the Stanford CAI program in initial reading (grades K through 3). March 12, 1971.

(Evaluation of the Stanford CAI program in initial reading. Journal of Educational Psychology, 1972, 63, 597-602.)
169 J. F. Juo la and R. C. Atkinson. Memory scanning for words versus categories. (Journal of Verbal Learning and Verbal Behavior, 1971,

10, 522-527.)
170 I. S. Fisch ler and J. F. Juola. Effects of repeated tests on recognition time for information in long-term memory. (Journal of Experimental

Psychology, 1971, 91, 54-58.)
171 P. Suppes. Semantics of context-free fragments of natural languages. March 30, 1971. (In K. J: J. Hintikka, J. M. E. Moravcsik, and

P. Suppes (Eds.), Approaches to natural language. Dordrecht: Reidel, 1973. Pp. 221-242.)
172 J. Friend. INSTRUCT coders' manual. May 1, 1971.
173 R. C. Atkinson and R. M. Shiffrin. The control processes of short-term memory. April 19,1971. (The control of short-term memory.

Scientific American, 1971, 224, 82-90.)
174 P. Suppes. Computer-assisted instruction at Stanford. May 19, 1971. (In Man and computer. Proceedings of international conference,

Bordeaux, 1970. Basel: Karger, 1972. Pp. 298-330.)
175 D. Jamison, J. D. Fletcher, P. Suppes, and R. C. Atkinson. Cost and performance of computer-assisted instruction for education of disadvantaged

children. July, 1971.
176 J. Offir. Some mathematical models of individual differences in learning and performance. June 28, 1971. (Stochastic learning models with

distribution of parameters. Journal of Mathematical Psychology, 1972, 9(4),
177 R. C. Atkinson and J. F. Juola. Factors influencing speed and accuracy of word recognition. AuguSt 12, 1971. (In S. Kornblum (Ed.),

Attention and performance IV. New York: Academic Press, 1973.)

178 P. Suppes, A. Goldberg, G. Kanz, B. Searle, and C. Stauffer. Teacher's handbook for CAI courses. September 1, 1971.
179 A. Goldberg. A generalized instructional system for elementary mathematical logic. October 11, 1971.
180 M. Jerman. Instruction in problem solving and an analysis of structural variables that contribute to problem-solving difficulty. November 12,

1971. (Individualized instruction in problem solving in elementary mathematics. Journal for Research in Mathematics Education, 1973,
4, 6-19.)

181 P. Suppes. On the grammar and model-theoretic semantics of children's noun phrases. November 29, 1971.
182 G. Kreisel. Five notes on the application of proof theory to computer science. December 10, 1971.
183 J. M. Moloney. An investigation of college student performance on a logic curriculum in a computer-assisted instruction setting. January 28,

1972.
184 J. E. Friend, J. D. Fletcher, and R. C. Atkinson. Student performance in computer-assisted instruction in programming. May 10, 1972.
185 R. L. Smith, Jr. The syntax and semantics of ERICA. June 14, 1972.
186 A. Goldberg and P. Suppes. A computer-assisted instruction program for exercises on finding axioms. June 23, 1972. (Educational Studies

in Mathematics, 1972, 4, 429-449.)
187 R. C. Atkinson. Ingredients for a theory of instruction. June 26, 1972. (American Psychologist, 1972, 27, 921-931.)
188 J. D. Bonvillian and V. R. Charrow. Psycholinguistic implications of deafness: A review, July 14, 1972.
189 P. Arable and S. A. Boorman. Multidimensional scaling of measures of distance between partitions. July 26, 1972. (Journal of Mathematical

Psychology, 1973, 10,
190 J. Ball and D. Jamison. Computer-assisted instruction for dispersed populations: System cost models. September 15, 1972. (Instructional

Science, 1973, 1, 469-501.)
191 W. R. Sanders and J. R. Ball. Logic documentation standard for the Institute For Mathematical Studies in the Social Sciences. October 4, 1972.
192 M. T. Kane. Variability in the proof behavior of college students in a CAI course in logic as a function of problem characteristics. October 6,

1972.
193 P. Suppes. Facts and fantasies of education. October 18, 1972. (In M. C. Wittrock (Ed.), Changing education: Alternatives from educational

research. Englewood Cliffs, N. J.: Prentice-Hall, 1973. Pp, 6-45.)
194 R. C. Atkinson and J. F. Juola. Search and decision processes in recognition memory. October 27, 1972.
195 P. Suppes, R. Smith, and M. Leveille". The French syntax and semantics of PHILIPPE, part 1: Noun phrases. November 3, 1972,
196 D. Jamison, P. Suppes, and S. Wells. The effectiveness of alternative instructional methods: A survey. November , 1972.

197 P. Suppe:. A survey of cognition in handicapped children. December 29, 1972.

198 B. Searle, P. Lorton, Jr., A. Goldberg, P. Suppes, N. Ledet, and C. Jones. Computer-assisted instruction program: Tennessee State
University. February 14, 1973.

199 D. R. Levine. Computer-based analytic grading for German grammar instruction. March 16, 1973.
200 P. Suppes, J. 0, Fletcher, M. Zanotti, P. V. Lorton, Jr., and B. W. Searle. Evaluation of computer-assisted instruction in elementary

mathematics for hearing-impaired students. March 17, 1973.

201 C. A. Huff. Geometry and formal linguistics. April 27, 1973.
202 C. Jenserna. Useful techniques for applying latent trait mental-test theory. May 9, 1973.

203 A. Goldberg. Computer-assis,..-d instruction: The application of theorem-proving to adaptive response analysis. May 25, 1973.

204 R. C. Atkinson, D. J. Herrmann, and K. T. Wescourt. Search processes in recognition memory. June 8, 1973.

205 J. Van Campen. A computer-based introduction to the morphology of Old Church Slavonic, June 18, 1973.

206 R. B. Kimball. Self-optimizing computer-assisted tutoring: Theory and practice. June 25, 1973.
207 R. C. Atkinson, J. D. Fletcher, E. J. Lindsay, J. 0. Campbell, and A. Barr. Computer-assisted instruction in initial reading. July 9, 1973.

208 V. R. Charrow and J. D. Fletcher. English as the second language of deaf students. July 20, 1973.

209 J. A. Paulson. Ah evaluation of instructional strategies in a simple learning situation. July 30, 1973.

210 N. Martin. Convergence properties of a class of probabilistic adaptive schemes called sequential reproductive plans. July 31, 1973.

7

(Continued from inside back cover)

211 J. Friend. Computer-assisted instruction in programming: A curriculum description. July 31, 1973.

212 S. A. Weyer. Fingerspelling by computer. August 17, 1973.

213 B. W. Searle, P. Lorton,Jr., and P. Suppes. Structural variables affecting CAI performance on arithmetic word problems of disadvantaged

and deaf students. September 4, 1973.

